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o typical urban catchment with separate sewer system
o very dynamic response
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o RGs provide point measurements
o obtained spatial information is very limited
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o commercial microwave links (CMLs) 
o path-integrated precipitation estimates



Introduction

o CML data are often highly biased
o correction method using RG data1

o direct comparison of rainfall data lacks reliable reference

o discharge observations 
o transformed information about rainfall
o reliable measurements

o can we validate rainfall data using observed discharges as a reference?

27 April 2017 EGU General Assembly 2017 5

1 Fencl, M., Dohnal, M., Rieckermann, J., 
and Bareš, V. 2017. Gauge-adjusted rainfall 
estimates from commercial microwave links, 
Hydrology and Earth System Sciences 21, 617-634.



Introduction

o urban runoff modelling 
o principal application of urban rainfall data
o introduces additional uncertainties

o uncertainties can be quantified
o predictions in a form of intervals (bands)
o not trivial to get them all and correctly
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Goal

What is the potential 
of precipitation estimates from CMLs
for urban runoff modelling?
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o urban runoff modelling 
o principal application of urban rainfall data
o introduces additional uncertainties

o uncertainties can be quantified
o predictions in a form of intervals (bands)
o not trivial to get them all and correctly

27 April 2017 EGU General Assembly 2017 7



Uncertainty analysis

o “total error analysis” method2

o rigorous bayesian inference
o prior formulation of knowledge necessary

o hydrological model extended with error model

Y = yM +  BM +  E 

o all principal uncertainty sources considered
o bias  as a stochastic autocorrelated process

2 Del Giudice, D., Honti, M., Scheidegger, A., Albert, C., 
Reichert, P., and Rieckermann, J. 2013. Improving 
uncertainty estimation in urban hydrological modeling 
by statistically describing bias. Hydrology and Earth 
System Sciences 17, 4209–4225.
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“random” errors



Rainfall data
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o 3 data sets

1) 1 local rain gauge

2) 3 remote rain gauges

3) CMLs + 3 remote RGs



Rainfall data
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o 3 data sets

1) 1 local rain gauge

2) 3 remote rain gauges

3) CMLs + 3 remote RGs

o from a municipal 
monitoring network



Rainfall data
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o 3 data sets

1) 1 local rain gauge

2) 3 remote rain gauges

3) CMLs + 3 remote RGs

o a combination of the 2 sources
o the adjustment method of Fencl et al. (2017) 



o 3 data sets

1) 1 local rain gauge

2) 3 remote rain gauges

3) CMLs + 3 remote RGs
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o areal rainfall

o 15 events from Aug-Oct 2014

o time resolution: 1 min

Rainfall data



Implementation
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calibration

predictions
local RG
remote RGs
CMLs + rem. RGs

o 5 events chosen for calibration

o calibrating the hydrological model

and the error model simultaneously

o using an independent rainfall data set

o distributed rainfall-runoff model 
implemented in EPA SWMM



Implementation
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o 10 events for predictions

o 5 heavy rainfalls

o 5 light rainfalls

o statistical method =>  many model runs

calibration

predictions
local RG
remote RGs
CMLs + rem. RGs



o the relative error of the total runoff volume

dV = (Vm – Vo) / Vo [-]
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model x  observation 

Performance statistics
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o the time shift of the discharge maximum

Δt_Qmax = t_Qmax,m – t_Qmax,o [h]

Δt_Qmax

Performance statistics



o the relative error of the peak discharges (integrated over 8-min period)

dVpeak = (Vpeak,m – Vpeak,o) / Vpeak,o [-]

Performance statistics
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model observation

Vpeak,m Vpeak,o8 min 8 min



o the prediction reliability [-] 

(fraction of the flow observations falling into the predicted interval)

Performance statistics
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∑ blue circles
∑ all circles



Results

o example of a light event
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local RG

remote RGs CMLs + rem. RGs

o no obvious difference

o wrong predictions for rising limbs



Results

o light events summary (all light events and all model runs)

o the relative error of the total runoff volume

o the prediction reliability
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o CMLs + remote RGs:
o dV – as good as others
o reliab – better than distant RGs alone



Results

o example of a heavy event #1
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remote RGs CMLs + rem. RGs

local RG

o CMLs + remote RGs:
o highest reliability
o perfect timing of the maximum



Results

o example of a heavy event #2
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local RG

remote RGs CMLs + rem. RGs

o CMLs + remote RGs:
o highest reliability
o perfect timing of the maximum
o best amplitude of the maximum



Results

o heavy events summary (all heavy events and all model runs)
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o CMLs + remote RGs
o best values for all statistics
o especially for maximum-related statistics



Conclusions

What is the potential 
of precipitation estimates from CML
for urban runoff modelling?
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o light events
o the same quality level as rain gauges
o higher reliability of predictions than remote RGs alone

o heavy events
o systematically better than remote RGs alone, not worse than a local RG
o for extraordinarily spatially variable events better than a local RG



Conclusions
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o light events
o the same quality level as rain gauges
o higher reliability of predictions than remote RGs alone

o heavy events
o systematically better than remote RGs alone, not worse than a local RG
o for extraordinarily spatially variable events better than a local RG

What is the potential 
of precipitation estimates from CMLs
for urban runoff modelling?

enabled by:

Fencl, M., Dohnal, M., and Bareš, V. 
Real-time adjusting of rainfall estimates 

from commercial microwave links

Invitation:
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