

eawag aquatic research 0000

Predicting urban stormwater runoff with quantitative precipitation estimates from commercial microwave links

Jaroslav Pastorek¹, Martin Fencl¹, David Stránský¹, Jörg Rieckermann², and Vojtěch Bareš¹

¹ Czech Technical University in Prague, Czech Republic ² Eawag, Switzerland

- typical urban catchment with separate sewer system
- o very dynamic response

27 April 2017

- O RGs provide point measurements
- obtained spatial information is very limited

path-integrated precipitation estimates

27 April 2017

EGU General Assembly 2017

Introduction

CML data are often highly biased
o correction method using RG data¹

¹ Fencl, M., Dohnal, M., Rieckermann, J., and Bareš, V. 2017. **Gauge-adjusted rainfall estimates from commercial microwave links**, *Hydrology and Earth System Sciences* 21, 617-634.

O direct comparison of rainfall data lacks reliable reference

- discharge observations
 - O transformed information about rainfall
 - o reliable measurements

O can we validate rainfall data using observed discharges as a reference?

Introduction

- O urban runoff modelling
 - principal application of urban rainfall data
 - introduces additional uncertainties

- uncertainties can be quantified
 - predictions in a form of intervals (bands)
 - not trivial to get them all and correctly

- urban runoff modelling
 - O principal application of urban rainfall data
 - introduces additional uncertainties

- uncertainties can be quantified
 - predictions in a form of intervals (bands)
 - not trivial to get them all and correctly

What is the potential of precipitation estimates from CMLs for urban runoff modelling?

Uncertainty analysis

• "total error analysis" method²

- rigorous bayesian inference
- prior formulation of knowledge necessary
- hydrological model extended with error model

 $Y = y_M + B_M + E$ "random" errors

all principal uncertainty sources considered
bias as a stochastic autocorrelated process

² Del Giudice, D., Honti, M., Scheidegger, A., Albert, C., Reichert, P., and Rieckermann, J. 2013. **Improving uncertainty estimation in urban hydrological modeling by statistically describing bias**. *Hydrology and Earth System Sciences* 17, 4209–4225.

EGU General Assembly 2017

8

Rainfall data

Rainfall data

10

Rainfall data

(†)

(cc

the adjustment method of Fencl et al. (2017)

Ο

EGU General Assembly 2017

Rainfall data

- O 15 events from Aug-Oct 2014
- O time resolution: 1 min

Implementation

- 5 events chosen for calibration \cap
 - calibrating the hydrological model and the error model simultaneously
 - O using an independent rainfall data set

distributed rainfall-runoff model \bigcirc implemented in EPA SWMM

EGU General Assembly 2017

Implementation

EGU General Assembly 2017

 \circ $\,$ the relative error of the total runoff volume $\,$

 $dV = (V_m - V_o) / V_o$ [-]

O the time shift of the discharge maximum

 $\Delta t_Q_{max} = t_Q_{max,m} - t_Q_{max,o} [h]$

• the relative error of the peak discharges (integrated over 8-min period)

(cc

 $(\mathbf{\hat{t}})$

 $dV_{peak} = (V_{peak,m} - V_{peak,o}) / V_{peak,o} [-]$

• the prediction reliability [-]

(fraction of the flow observations falling into the predicted interval)

- O light events summary (all light events and all model runs)
 - the relative error of the total runoff volume

	local RG	remote RGs	CML + rem. RGs
E(dV)	-0.089	-0.163	-0.065
sd(dV)	0.222	0.294	0.292
o the prediction r			
	local RG	remote RGs	CML + rem. RGs
reliab	0.97	0.905	0.932

- CMLs + remote RGs:
 - \circ *dV* as good as others
 - *reliab* better than distant RGs alone

(†) (cc

Results

O heavy events summary (all heavy events and all model runs)

		local RG	remote RGs	CML + rem.RGs	
	E(dV)	-0.182	-0.202	-0.114	
	sd(dV)	0.158	0.226	0.183	
	E(dVpeak)	0.177	-0.047	-0.001	
	sd(dVpeak)	0.52	0.457	0.19	
	E(shift(Qmax))	-0.231	0.087	0.086	
	sd(shift(Qmax))	0.904	0.177	0.134	
	reliab	0.856	0.842	0.863	

O CMLs + remote RGs

- O best values for all statistics
- especially for maximum-related statistics

Conclusions

What is the potential of precipitation estimates from CML for urban runoff modelling?

- O light events
 - the same quality level as rain gauges
 - higher reliability of predictions than remote RGs alone
- heavy events
 - systematically better than remote RGs alone, not worse than a local RG
 - for extraordinarily spatially variable events better than a local RG

Conclusions

What is the potential of precipitation estimates from CMLs for urban runoff modelling?

the same quality

Invitation:

Fencl, M., Dohnal, M., and Bareš, V. Real-time adjusting of rainfall estimates from commercial microwave links

O higher reliability of predictions than remote RGs alone

o heavy events

light events

Ο

Ο

- O systematically better than remote RGs alone, not worse than a local RG
- O for extraordinarily spatially variable events better than a local RG

EGU General Assembly 2017

