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ABSTRACT

The Lunae Planum, a plain between the Tharsis Montes and the Acidalia Planitia on Mars, represents a |
transitional zone from a volcanic rise to a lowland plain, respectively. From West to East at N20°, topography | H
changes from 600 m to -750 m. Here, several wrinkle ridges that are compressional tectonic features formed by
folding and thrust faulting, mark the surficial deformation of the martian crust. From the analysis of >25 wrinkle

ridges in earlier studies a total shortening of ~1123 m and a compressive strain of 0.24% has been suggested for the
Lunae Planum.
|
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METHODOLOGY

Our analysis is based on determining the amount of total shortening and calculating an absolute age for wrinkle ridges based on
the crater-size frequency distribution. More than 12 ridges on the Lunae Planum were investigated in detail, taking 88
topographic profiles (Figure 6). We calculate the shortening after Plescia (1991), by measuring the elevation offset, width and
total relief of wrinkle ridges. The width corresponds to the distance of the two lowest points across the wrinkle ridge, where the
slope angles reach minimum; the limit between wrinkle ridge limb and intermontane plain (Figure 5). The total relief is
measured by taking the difference between the elevation of the lowest flat and the highest point of the ridge. The elevation
difference between the two plains across the ridge corresponds to the elevation offset value (Figure 5).
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In this study we investigate the chronological order of geomorphic structures and determine the timing and
duration of the crustal shortening of Lunae Planum. We use remote sensing mapping techniques and crater size- |
frequency distribution measurements (CSFD). In our analyses we use HRSC (12.5 m/pixel), CTX (6 m/pixel) and }
HiRISE (0.3 m/pixel) satellite images and digital terrain models to document geomorphic structures such as,
wrinkles ridges, impact craters, crater ejecta blankets and intermontane plains. Our CSFD measurements of wrinkle
ridges reveal an age distribution from ~3.9 Ga to ~3.0 Ga, with surfaces getting younger towards the East. Our
findings are in accordance with earlier observations of greater shortening amounts towards the West (in older .
ridges). The age distribution of wrinkle ridges suggests a 9 Ma time interval for the proposed ~1123 m horizontal ' o
shortening at a deformation rate of 1.24+0.2x 10° mm/yr for compressional deformation on the Lunae Planum. F

30° N-} 30° N Center of Wrinkle Ridge

elevation

R v
oo— =
Bt
- 3
.
. ® * 5
.
.

backthurst

INTRODUCTION

The Lunae Planum basin is located at the north of Valles Marineris; a well studied rifting system of Mars. The plains
covering the area between Tharsis Montes (volcanoes) in the west and Acidalia Planitia (oceanic plains) in the east ‘
are called Lunae Planum. The topography of this area descends from west to east, from 600 m to -750 m (Figure 2a). |

Wrinkle ridges are observed in the region which are assumed to formed by folding and thrust faulting during the H
development of the Tharsis rise (Golombek, 1991). Wrinkle ridges are linear, asymmetric morphologic features that 1 “
are generally located in the plains on Mars and are considered to be of volcanic origin (Figure 4). Wrinkle ridges ‘ W
were first described by Golombek et al. (1991) and Watters and Robinson (1997) by using VIS-EDR and IRTM |
images collected by the Viking Orbiter. Currently Mars Reconnaissance Orbiter (MRO) and the Mars Orbiter Laser .
|
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Figure 4. The wrinkle ridges
of Lunae Planum.
NASA/USGS - ESA/DLR/FU
Berlin (G.Neukum)

According to Plescia (1991) the total shortening is the sum of the faulting shortening and folding shortening.
Accordingly the faulting shortening can be expressed as:

Figure 5. The schematic representation of the modeling parameters used to calculate the
amount of shortening on the wrinkle ridges.
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The formation of wrinkles ridges 1s widely discussed and different mechanisms are suggested to explain their
origin. Recent studies suggest that wrinkle ridges are secondary structures shaped under compressive stresses (e.g.,

Plescia and Golombek, 1986; Golombek et el., 1990; Sharpton and Head, 1988, Watters, 1988 a,b, 1990), while I
others consider the ridges to be lava intrusions within an extensional tectonic setting (e.g., Scott, 1989, Young et al.

Figure 1. a) On the natural colour satellite image the

Lunae Planum i1s slightly indistinguishable flat b
topography lying at the Northern hemisphere of Mars.
b) The plain is distinct on the digital elevation model of
the planet and is located east to the highest mountains
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where (a) 1s the dip of the fault and Eo is the elevation offset.

1973, Hodges, 1973). ) b ol R — ( The dip of the fault is unobserved. Golombek (1991) suggests that folding is accompanied with low-angle reverse faulting
’ ’ of the planet (Tharsis Montes). | et et _ _ | . )
o a— = S G MARS Noachian Hesperian Amazonian and reverse faults are considered to have a dip angle of 25 degrees on the average.)
In this study we investigate the chronological order of wrinkle ridges and determine the timing and duration of the i X By /A a a 8 . . _
crustal shortening of Lunae Planum. The Lunae Planum has been mapped based on remote sensing techniques Fnoepare ——— N\ o ~ S SO0 SIONIFiMiEm—D The folding shortening can be expressed as:
(Greeley and Guest, 1987). Wrinkle ridges, intermontane plains, craters, crater ejectas and fossae morphologic Whoaphers By O Sfo=Si-Sd
units of Lunae Planum has been analysed and mapped with HRSC and CTX satellite images (MRO). On the other / ubductedcrm EARTH Hadean Archezen Proterozoic mw"ﬂ|
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hand, Crater-size frequency distribution method has been applied to reveal the wrinkle ridge ages. Crustal Rollback

shortening has been calculated by measuring parameters such as elevation offset, width and total relief of wrinkle
ridges. A total of 88 topographic profiles were taken along the ridges from high resolution MOLA (256 ppd) digital
terrain models.

Adapted from Bibring et al. (2006)

Where Siis the integrated length across the ridge surface and Sd is the horizontal point to point straight line distance across the
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Figure 2. a) Color-coded Elevation map of Mars based on MOLA. b) A model proposed by from Bibring et al. 2006

Yin 2012, showing the spatial relationship of the Tharsis rise and associated subduction.
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Wrinkle ridges on the Luane Planum, have a width of up to 10 km and a length of at least 50 km reaching up
to 200 km. The ridges are oriented in north-south direction, are asymmetric in E-W profiles and have an
average distance of 50 km from each other. Their eastern limbs form steeper scarps related to faulting.
Lithologically, previous studies on this region suggest that the main volcanic rock forming wrinkle ridges
1s basalt. In addition, ongoing geological processes such as Aeolian and crater impactions erode the
wrinkle ridges.

Figure 8. 22 High Resolution
Spectrometric Camera (HRSC)
images have been used in order
to map the wrinkle ridges given
in the black boxes.
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