Signature of magmatic processes in ground deformation signals from Campi Flegrei (Italy)

M. Bagagli(l,*), C.P. Montagna(l), P. Papale(l)

(l) Istituto Nazionale di Geofisica e Vulcanologia – INGV
(*) currently at D-ERDW ETH-Zürich

What?

- Comparison between strain records and synthetic ground deformation caused by magma mixing
- Detection of magma dynamics from analyses of ground deformation signals at active volcanoes in ULP (Ultra-Long-Period) band 10^{-4} Hz to 10^{-2} Hz [Longo, 2012]

Why?

- Magma re-juvenation has been identified as the trigger of past eruptions at Campi Flegrei [Tonarini et al., 2009]
- New method to approach from short to medium term volcanic hazard forecast
What?

• Comparison between strain records and synthetic ground deformation caused by magma mixing
• Detection of magma dynamics from analyses of ground deformation signals at active volcanoes in ULP (Ultra-Long-Period) band 10^{-4} Hz to 10^{-2} Hz [Longo, 2012]

Why?

• Magma re-juvenation has been identified as the trigger of past eruptions at Campi Flegrei [Tonarini et al., 2009]
• New method to approach from short to medium term volcanic hazard forecast
What?

• Comparison between strain records and synthetic ground deformation caused by magma mixing
• Detection of magma dynamics from analyses of ground deformation signals at active volcanoes in ULP (Ultra-Long-Period) band 10^{-4} Hz to 10^{-2} Hz [Longo, 2012]

Why?

• Magma re-juvenation has been identified as the trigger of past eruptions at Campi Flegrei [Tonarini et al., 2009]
• New method to approach from short to medium term volcanic hazard forecast
Outline

• Synthetic dataset
• Monitoring dataset
• Methods & analysis
• Concluding remarks
Outline

• Synthetic dataset

• Monitoring dataset

• Methods & analysis

• Concluding remarks
Numerical simulation – Set up

- Magma chambers:
 - different geometries of shallow chamber
 - different magma compositions: *phonolitic* (shallow), *shosonitic* (deep)
 - different volatile content (shallow chamber)

<table>
<thead>
<tr>
<th>Simulation</th>
<th>Deep chamber</th>
<th>Shallow chamber</th>
<th>Shallow chamber geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF1</td>
<td>shoshonite</td>
<td>phonolite</td>
<td>oblate</td>
</tr>
<tr>
<td></td>
<td>1% CO₂ - 2% H₂O</td>
<td>0.3% CO₂ - 2.5% H₂O</td>
<td></td>
</tr>
<tr>
<td>CF2</td>
<td>shoshonite</td>
<td>phonolite</td>
<td>prolate</td>
</tr>
<tr>
<td></td>
<td>1% CO₂ - 2% H₂O</td>
<td>0.3% CO₂ - 2.5% H₂O</td>
<td></td>
</tr>
<tr>
<td>CF3</td>
<td>shoshonite</td>
<td>phonolite</td>
<td>spherical</td>
</tr>
<tr>
<td></td>
<td>1% CO₂ - 2% H₂O</td>
<td>0.3% CO₂ - 2.5% H₂O</td>
<td></td>
</tr>
<tr>
<td>CF4</td>
<td>shoshonite</td>
<td>phonolite</td>
<td>oblate</td>
</tr>
<tr>
<td></td>
<td>1% CO₂ - 2% H₂O</td>
<td>0.1% CO₂ - 1% H₂O</td>
<td></td>
</tr>
<tr>
<td>CF5</td>
<td></td>
<td></td>
<td>prolate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.1% CO₂ - 1% H₂O</td>
<td></td>
</tr>
</tbody>
</table>
Numerical simulation – Observation

- magma arise in the conduit
- magma mixing & mingling driven by buoyancy and density contrast [Montagna, 2015]
- no more relevant dynamics changes
Numerical simulation – Observation

- magma arise in the conduit
- magma mixing & mingling driven by buoyancy and density contrast [Montagna, 2015]
- no more relevant dynamics changes
Numerical simulation – Observation

- Magma arise in the conduit
- Magma mixing & mingling driven by buoyancy and density contrast [Montagna, 2015]
- No more relevant dynamics changes

Max. Time Simulated: \(\approx 7.5 \) hr
Numerical simulation – Results

• Direct observable
 – pressure time series at the chamber’s boundaries

• Strain
 – full band ground deformation signal
 – Green’s function
 – homogeneous medium
 – one-way coupling

• Template signal
 – cross-correlation single traces
 – high pass filtering: $3.7 \cdot 10^{-5}$ Hz
 – used for comparison with real data
Numerical simulation – Results

- **Direct observable**
 - pressure time series at the chamber’s boundaries

- **Strain**
 - full band ground deformation signal
 - Green’s function
 - homogeneous medium
 - one-way coupling

- **Template signal**
 - cross-correlation single traces
 - high pass filtering: $3.7 \cdot 10^{-5}$ Hz
 - used for comparison with real data
Numerical simulation – Results

- Direct observable
 - pressure time series at the chamber’s boundaries

- Strain
 - full band ground deformation signal
 - Green’s function
 - homogeneous medium
 - one-way coupling

- Template signal
 - cross-correlation single traces
 - high pass filtering: $3.7 \cdot 10^{-5}$ Hz
 - used for comparison with real data
Outline

- Synthetic dataset
- Monitoring dataset
- Methods & analysis
- Concluding remarks
Instrumental Network

- Università di Salerno
 - 3 strainmeters (2004-2005) [Scarpa, 2007]
 - 2 tiltmeters (2008-2009)

- Time window analysed
 - Seismic swarm (October-November 2006)
Raw monitoring data

- Università di Salerno
 - 3 strainmeters (2004-2005) [Scarpa, 2007]
 - 2 tiltmeters (2008-2009)

- Time window analysed
 - Seismic swarm (October-November 2006)
Data processing

- Atmospheric pressure and Tidal effects removed
 - cleanstrain+ [Langbein, 2010]
Data processing

- Atmospheric pressure and Tidal effects removed
 - cleanstrain+ [Langbein, 2010]

- Highpass filtering
 - $3.7 \cdot 10^{-5}$ Hz
Outline

• Synthetic dataset

• Monitoring dataset

• Methods & analysis

• Concluding remarks
Matched filtering

- Proc. Strain
- Real Strain
- Earthquakes

Match Filt. corr
- Earthquakes

Synth. Strain

Time (hr)

Match value

Norm. value

0.4
0.2
0.1
0.0
-0.1
-0.2
-0.3
-0.4

10/20/06 10/21 10/22 10/23 10/24 10/25 10/26 10/27 10/28 10/29

60
40
20
0

10/20/06 10/21 10/22 10/23 10/24 10/25 10/26 10/27 10/28 10/29
Matched filter
Matched filter

• High similarity transient: 21th Oct. + 1st Nov. 2006
QUARTO - 1st November

- **High resemblance**

 time-domain

- **Plateau** $3 \cdot 10^{-4}$ Hz
- **Peak** $6 \cdot 10^{-4}$ Hz

frequency-domain

- **Wavelet Transform**

 time-frequency domain

[Torrence, 1998]
QUARTO - 1st November

- High resemblance (time-domain)
- Plateau $3 \cdot 10^{-4}$ Hz
- Peak $6 \cdot 10^{-4}$ Hz (frequency-domain)
- Wavelet Transform (time-frequency domain) [Torrence, 1998]
QUARTO - 1st November

- High resemblance (time-domain)
- Plateau $3 \cdot 10^{-4}$ Hz
- Peak $6 \cdot 10^{-4}$ Hz (frequency-domain)
- Wavelet Transform (time-frequency domain) [Torrence, 1998 – Grinsted 2004]
Outline

• Synthetic dataset

• Monitoring dataset

• Methods & analysis

• Concluding remarks
Take home …

• Synthetic ground deformation signals show characteristic features both in time and frequency domain.

• These features can be identified in monitoring data *(matched filter, wavelet transform …*)

• Monitoring data could record signals linked to shallow magmatic processes *(ie. ULP band)*

… to be continued?

• Compare tiltmeters data

• Seek different time windows

• Enhanced numerical simulation *(i.e. seismicity, CF hydrothermal system …)*
Take home …

• Synthetic ground deformation signals show characteristic features both in time and frequency domain
• These features can be identified in monitoring data (*matched filter, wavelet transform …*)
• Monitoring data could record signals linked to shallow magmatic processes (*i.e. ULP band*)

… to be continued?

• Compare tiltmeters data
• Seek different time windows
• Enhanced numerical simulation (*i.e. seismicity, CF hydrothermal system …*)

• Tonarini, Sonia, et al. “Geochemical and B–Sr–Nd isotopic evidence for mingling and mixing processes in the magmatic system that fed the Astroni volcano (4.1–3.8 ka) within the Campi Flegrei caldera (southern Italy).” *Lithos* 107.3 (2009): 135-151.
... in addition
... in addition

- Cross correlation
- Frequency Spectrum
... in addition

QUAR - 21/10/2006

- ESD (dB/Hz)
- Frequency (Hz)
- Normalized Strain
- Pseudo-Frequency (Hz)

QUAR - 01/11/2006

- ESD (dB/Hz)
- Frequency (Hz)
- Normalized Strain
- Pseudo-Frequency (Hz)
... in addition

MRUS - 21/10/2006

MRUS - 01/11/2006

- Processed
- Synthetic

Normalized Strain

Pseudo-Frequency (Hz)

- Processed
- Synthetic