Tsunami Simulators in Physical Modelling

Concept to Practical Solutions

27 April 2017

Dr Ian Chandler, W Allsop, D Robinson, T Rossetto, D McGovern & D Todd
- 2240 recorded tsunami events from 6100 BC to 2016*
- 5 major tsunami since 2004 (~ 297,300 deaths)
- Economic loss from Japan 2011 tsunami estimated at $210 Billion**
- 150M people and £20Trillion in assets forecast to be exposed to coastal flooding by 2070 (Nicholls et al 2007)

*Adapted from A.Nassirpour (2014) MSc thesis UCL **Swiss Re (2012)
Solitary waves
Miles (1980)

N-waves
Tadepalli & Synolakis (1994)
Superimposition of solitary waves on measurements for a) the Tohoku tsunami and b) the Indian Ocean tsunami, from Schimmels et al (2016)
The Question from UCL:
- Can we generate realistic tsunami in a practical physical model facility?

What are the engineering questions?
- What are the tsunami forces on buildings and coastal defences?
- Are existing guidelines adequate?
- Is engineering design the solutions?

Credit: Professor Tiziana Rossetto, UCL
Tsunami modelling facilities

Large Hydro-Geo Flume, PARI, Japan

- 184 m long
- 3.5 m wide
- 12 m deep

Large Wave Flume, Oregon State University

- 104 m long
- 3.7 m wide
- 4.6 m deep

West Tank, W. M. Keck Hydraulics Laboratory of the California Institute of Technology US

- 32 m long
- 0.4 m wide
- 0.6 m deep

Hammack (1972), Goring (1978), Synolakis (1986)
How it works

- **Trough generation**
 - Control valve
 - Pump

- **Crest generation**
 - Control valve
 - Pump

- **Wave propagation**
 - Control valve
 - Pump
HRW Tsunami Simulator – 1st Generation

Facility
- 1.2 m wide by 45 m long

TS dimensions
- 1.8 m tall, 1.2 m wide and 4.8 m long
- Variable height outlet

TS equipment
- Pressure transducer
- Computer controlled 45° butterfly valve
- x1 ZepherUK vacuum pumps
Outlet improvements for 1st generation

Improving 1st generation TS

Calibration of ‘Mercator’ wave at 1:50 scale
Facility
- 1.8 m wide by 100 m long

TS dimensions
- 3.5 m tall, 1.8 m wide and 4.0 m long
- 0.4m outlet height

TS equipment
- x2 ultrasonic level sensors
- Pressure transducer
- Computer controlled 45° butterfly valve
- x2 ZepherUK vacuum pumps
Elevated waves

The graph shows the free-surface elevation over time for different wave periods. The waves are categorized into four groups based on their period length:

- **T=160s** (blue line)
- **T=80s** (dark blue line)
- **T=45s** (teal line)
- **T=20s** (olive line)

Table of Data

<table>
<thead>
<tr>
<th>Name</th>
<th>Period, T (s)</th>
<th>Crest amplitude, a⁺ (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E160</td>
<td>160</td>
<td>0.056</td>
</tr>
<tr>
<td>E80</td>
<td>80</td>
<td>0.066</td>
</tr>
<tr>
<td>E45</td>
<td>45</td>
<td>0.085</td>
</tr>
<tr>
<td>E20</td>
<td>20</td>
<td>0.089</td>
</tr>
</tbody>
</table>
N-waves

The graph shows the free-surface elevation over time for different wave periods (T). The x-axis represents time in seconds (s), ranging from 0 to 250, and the y-axis represents free-surface elevation in meters (m), ranging from -0.08 to 0.08.

The legend indicates the wave periods: T=240s (light blue), T=200s (blue), T=166s (green), T=111s (red), T=80s (dark blue), and T=20s (gray).

The data points illustrate how the free-surface elevation changes with time for each wave period, demonstrating the wave's behavior and the effect of the period on the wave's characteristics.
Research with 2nd generation – Phase 1

Run-up
Coastal defences
Single buildings
Initial building array tests
Facility
- 4.0 m wide by 70 m long

TS dimensions
- 4.0 m tall, 4.0 m wide and 4.4 m long
- 0.4m outlet height

TS equipment
- High resolution level sensors
- Pressure transducer
- Closed loop computer controlled 45° butterfly valve
- x2 ZepherUK vacuum pumps
Coastal defences
Building arrays
‘Failing’ coastal defences
Scour around buildings
Research with 3rd generation
The European Research Council (ERC) funding for the URBANWAVES project (Grant No. 336084) and the Engineering and Physics Research Council (EPSRC) funding for the CRUST project (Grant No. EP/M001067/1) and previously EPICentre. We acknowledge support of numerous staff at HR Wallingford, particularly Dr S Richardson, Mr O Harris and Mr I Payne: visiting researchers, particularly Ingrid Charvet, Pierre-Henri Bazin, Alice Barthel, Mario Zaccaria, Ignacio Barranco-Granged, and Roberta Riva; and of UCL (senior partners on the URBANWAVES grant), especially Dr T Robinson, Dr A Foster and Dr C Petrone.
Thank you

Dr Ian Chandler, HR Wallingford