

Simulation-based performance analysis of EC-Earth 3.2.0 using Dimemas

Xavier Yepes-Arbós^{1,2}, Mario C. Acosta¹, Kim Serradell¹, Alicia Sanchez Lorente¹, Francisco J. Doblas-Reyes^{1,3}

¹Earth Sciences Department, Barcelona Supercomputing Center (BSC), Spain, ²Universitat Politècnica de Catalunya (UPC), Spain, ³Institució Catalana de Recerca i Estudis Avançats (ICREA), Spain

EC-Earth [1] is a global coupled climate model, which integrates a number of component models in order to simulate the earth system. The two main components are IFS 36r4 as atmospheric model and NEMO 3.6 as ocean model, both coupled using OASIS3-MCT. There are other small components like LIM3 as sea-ice model and runoff-mapper to distribute runoff from land to the ocean through rivers. Coupling consists in connecting and synchronizing different components to exchange data. Since each components to a different scalability, to find a good balance between them to reduce inefficiencies is a challenge. This happens in EC-Earth, where to achieve a good efficiency is a complex issue [2][3]. For example, the scalability of this model using the T255L91 grid with 512 MPI processes for IFS and the ORCA1L75 grid with 128 MPI processes for NEMO achieves 40.3 of speedup, or 15.7 simulated years per day (SYPD). Therefore, a performance analysis is required to find the bottlenecks of the model to then apply the correct optimization techniques. There are previous works using profiling and tracing [2][3], but in this study we present a different approach based on simulation. Using traces of EC-Earth, Dimemas can simulate its message-passing behavior to predict the impact of hardware changes.

2. BSC tools

Performance tools [4] are essential to study the behavior of EC-Earth:

- **Extrae**: is a package used to instrument the code. It generates trace-files with hardware counters, MPI other messages and information.
- Paraver: is a browser used to analyze both visually and analytically trace-files.
- **Dimemas**: is a simulator based on traces to predict the behavior of message-passing programs configurable parallel machines.

The view of a trace consists of **MPI processes** on the Y axis and the timeline on the X axis. Particularly, in this poster all views are of MPI functions, where each type of call is identified by a color. Furthermore, all views contain 4 time steps, using 512 processes for IFS and 128 for NEMO. There are 3 regular time steps and 1 IFS time step with radiation. All the scenarios are compared with regard to a simulated base trace that is adjusted to the actual trace. This base trace uses an interconnection network with 8 µs of latency (delay of a message between the sender and the receiver) and 500 MB/s of **bandwidth** (the maximum rate that data can be transferred).

5. Model sensitivity

Lagrangian calculation in IFS has big messages (sensitive to bandwidth).

EXCELENCIA SEVERO OCHOA

1. Introduction

The last test is useful to see the impact of the coupling process between IFS and NEMO. The idea is to "disable" one of the models to see how coupling affects the other one. By "disabling" is meant to make one of the models much faster than usual and not changing any parameter of the other one. The traces show that the IFS' time step is **slower** than NEMO's one, since when IFS is "disabled", the execution finishes earlier.

The research leading to these results has received funding from the EU Seventh Framework Programme (FP7) under grant agreement no 312979 (IS-ENES2) and from the EU H2020 Framework Programme under grant agreement no 675191 (ESiWACE). This poster can be downloaded at https://earth.bsc.es/wiki/doku.php?id=library:external:posters The report can be downloaded at https://earth.bsc.es/wiki/doku.php?id=library:external:technical_memoranda Corresponding author: xavier.yepes@bsc.es

imbalances

6. Disabling one model

Each model reacts different to hardware changes. The ideal machine scenario reveals that there are several sources of inefficiencies: **20.59%** of the execution time is **communication** which means that at least a 20.59% of EC-Earth execution is inefficient; there are not only workload imbalances between IFS and NEMO at each time step, but also within each model as shown by MPI waiting functions; and there are data dependencies as suggested by chains of messages.

- well-known computational inefficiency.

[1] Hazeleger W. et al., 2011: "EC-Earth V2.2: description and validation of a new seamless earth system prediction model". Clim Dyn, doi:10.1007/s00382-011-1228-5 [2] Yepes-Arbós, X. et al., 2016: "Scalability and performance analysis of EC-Earth 3.2.0 using a new metric approach (Part II)". Barcelona Supercomputing Center [3] Acosta, M.C. et al., 2016: "Performance analysis of EC-Earth 3.2: Coupling" Barcelona Supercomputing Center Barcelona Supercomputing Center. BSC performance tools, 2016: https://tools.bsc.es/

4. Ideal machine

The first test consists in simulating the **ideal machine**, which has an interconnection network with **infinite bandwidth** and **no latency**. Thus, it is possible to study the communication's overhead, the workload imbalance and potential data dependencies. The simulation shows that the 20.59% of execution time is communication, there are workload imbalances and data dependencies.

7. Conclusions

From a model sensitivity point of view the latency affects the conservative part in the coupling from IFS to NEMO (dependent small messages), whereas the **bandwidth affects** the **Semi-Lagrangian** calculation (big messages). In NEMO, the simulated latencies and bandwidths in this study only affect slightly its execution time, in spite of its

The **coupling is a limiting** factor in the model. With the configuration used in this study, the IFS' time step is **slower** than NEMO's one. When IFS is "disabled", the execution finishes earlier, nevertheless, when NEMO is "disabled", the execution time does not change. This means that in coupled models, the whole **system is limited** by the **slowest component**.

References

