

EGU General Assembly 2017

Analysis of temporal and spatial overlapping of hazards interactions at different scales

Silvia De Angeli^{1,2,3}

Eva Trasforini ¹, Faith Taylor ³, Roberto Rudari ¹, Lauro Rossi ¹

- ² IUSS Pavia, Italy
- ³ King's College London, UK

Contacts: silvia.deangeli@cimafoundation.org

Main goal of this talk

Present a **framework** to investigate

- hazard interactions
- the resulting damage interactions

in a given region

Overview

- **Hazard interactions**: a
- Causal dependencies a

Spatial and temporal of

LIUIIS

egion

Overview

- 1 Hazard interactions: a brief overview
- 2 Causal dependencies among hazards
 - **Spatial and temporal overlapping** of
- a hazards and how they result in different damage interaction mechanisms
- 4 How to model damage interactions?
- 5 TOOL : **QGIS plugin** (prototype)
- 6 Main **reflections** on multi-hazard damage assessment

1

Hazards Superimposition vs Hazard Interactions

2

Basic mechanisms of interaction amongst hazards

3. Spatial and temporal overlapping of hazards

Influence of spatial and temporal hazard overlap on damage

(a)			Hazard Spatial Overlap		
	ВҮ		YES	NO	
	erlap	YES	Spatial – Temporal overlap damage	Temporal (but not Spatial) overlap damage B	
	Hazard Temporal Overlap	NO $(\Delta T_{H1-H2} < T_{H1}^{REC})$	Spatial overlap damage (with residual and subsequent damage)	No spatial or temporal overlap damage	
	Hazaı	NO $(\Delta T_{H1-H2} > T_{H1}^{REC})$	No spatial or temporal overlap damage	No spatial or temporal overlap damage	

 ΔT_{H1-H2} = time window between the two hazards H1 and H2

 $T_{\rm H1}^{\rm REC} =$ time required by the system to completely recover from damage caused by H1

SPATIAL - TEMPORAL OVERLAP DAMAGE:

combination of simultaneous damages from different hazards in the same place

Example

Windstorm and flooding

• TEMPORAL (but not Spatial) OVERLAP
DAMAGE:
temporal overlapping of damages from different hazards in different places

Example

Image captured by Aqua satellite on Feb. 17, 2015. Credit: Jeff Schmaltz, MODIS Rapid Response Team.

Snowstorm and wildfires

C

SPATIAL OVERLAP DAMAGE (with residual and subsequent damage): a second damage is overlapping an existing residual damage in the same place

Example

Levee damage due to earthquake

Levee collapse during a flood

NO SPATIAL OR TEMPORAL OVERLAP DAMAGE:

- Independent single hazard damages
- No damage interactions

hazard overlap on damage

			Hazard Spatial Overlap		
_	ВҮ		YES	NO	
	erlap	YES	Spatial – Temporal overlap damage	Temporal (but not Spatial) overlap damage B	
	Hazard Temporal Overlap	NO $(\Delta T_{H1-H2} < T_{H1}^{REC})$	Spatial overlap damage (with residual and subsequent damage)	No spatial or temporal overlap damage	
	Haza	NO $(\Delta T_{H1-H2} > T_{H1}^{REC})$	No spatial or temporal overlap damage	No spatial or temporal overlap damage	

 $\Delta T_{\text{H1-H2}}$ = time window between the two hazards H1 and H2

T_{H1}REC = time required by the system to completely recover from damage caused by H1

3.3

Spatial scale

Time

4.3

How to model damage interactions?

Damage from Hazard 1

What about the combined damage

		v<3(m/s)	3≤v<7(m/s)	v>7(m/s)		
	Asphalt road	Very Low	Low	Low		
	Gravel/cobble stone road	Very Low	Medium	Medium		
	Unpaved road	Very Low	Medium	High		

Damage from Hazard 2

4.2

Significant aspects to consider in order to properly model damage interactions:

- Hazards sequence
- Time window between hazards
- Recovery process dynamic between hazards (if possible)
- Damage targets (structure/content/ both)
- Kind of physical interaction between hazards and targets

Use of the parameters to determine a SET OF RULES to combine qualitatively damages from different hazards

TOOL: QGIS plugin (prototype)

6

Main reflections on multi-hazard damage assessment

- Hard to find a general approach
- Qualitative or semi-quantitative approaches can be a starting point
- Spatial and temporal overlapping of hazards play a main role
- Change in exposure and vulnerability

THANK YOU Questions?

