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Marine varves are finely laminated sediments with seasonally alternating components that have been deposited from marine or brackish
waters in connection with the global ocean. Varve sequences are natural archives of paleoenvironmental conditions that offer accurate
internal time control in calendar years, exceptionally high temporal resolution, and the possibility to calculate flux rates. Varve records can
typically provide longer-term perspectives on environmental dynamics, and can thus offer detailed information for the reconstruction of
paleoenvironments and competent advice in the development of environmental policy. The global compilation of reported marine varved
sedimentary records throughout the
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1 Deep Inlet, Alaska, USA 28 Cariaco Basin, Venezuela
2 Disenchantment Bay, Alaska, USA 29 Celtic-Armorican Margin, off France o | 1 UOO
3 Muir Inlet, Alaska, USA 30 Sermilik Fjord, Greenland 30 N
4 Adélie Basin, Antarctic Margin 31 Alfonso Basin, Gulf of California, Mexico 1250
5 Dumont d’Urville Trough, Antarctic Margin 32 Guaymas Basin, Gulf of California, Mexico
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13 Baltiq Sea south of Aland, Sweden Napoli mud volcano, Italy . | 3500
14 Edsviken Bay, Baltic Sea, Sweden 40 Benguela Current off Namibia . — :
15 Gotland Deep, Gulf of Finland, Baltic Sea 41 Northern-Central California Margin, USA 30°S Marine varve deposition _
16 Kglixélven es.tua.ry, Baltic .Sea, Sweqen 42 Norwe_gian Sea_ . | d - = 4000
17 Middle-Swedish ice-marginal formation 43 Peruvian Margin primarily due 1o...
18 Savean valley, Sweden 44 Pettaquamscutt River estuary, Rhode , . i pp— 4500
19 South-central Swedish lowlands Island, USA Q OMZ impingement
20 St. Anna archipelago, Baltic Sea, Sweden 45 Riviere Nastapoka area, Québec, Canada . _ A, : . 5000
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25 Frederick Sound, British Columbia, Canada 50 Tempelfjorden, Svalbard Archipelago : : iy
26 Saanich Inlet, British Columbia, Canada 51 Tay estuary, Scotland O other factors — 6500
27 Santa Barbara Basin, California, USA 52 Whidbey Island, Washington, USA
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o Oxygen Minimum Zone. In contrast, vast Mesozoic ocean basins transiently became suboxic
or even anoxic and would likely have produced a wider-spread pattern of varve occurrence.
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varying sedimentary input to yield a recognizable rhythmic varve pattern. Additional factors
include the strength and depth range of the Oxygen Minimum Zone (OMZ) and regional
anthropogenic eutrophication from point sources such as large polluted rivers. Quaternary
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CARIACO BASIN anpanares | | PEAD ZONES' DUE TO EUTROPHICATION marine varves are not Only found in those parts of the open ocean that COmpIy with these
B s el conditions, but also in fiords, embayments and estuaries with thermohaline density stratification,
S | |22 L s s« and nearshore ‘marine lakes’ with strong hydrologic connections to ocean water. The sketches
----------------------- ) identify 8 types of idealized and simplified marine sedimentary environments and processes
(E) S — (F)| where modern deposition and preservation of laminated sediments have been observed.
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(A, B) Backscatter electron
images (BSEI), Effingham Inlet
(Chang et al., 2003); (C) X-
radiograph, Effingham Inlet,
sosencseament —ygarves AD 1947-1993

- Qlastic sediment,
-g:g[;n?gceous (DalllmOre et al, 2005) (D) X'

ssonc radiograph, Saanich Inlet, with
(E, F) BSEI enlargements
(Dean et al., 2001; Dean &
Kemp, 2004). (G) Photograph
of the 7645 cal BP Mazama
tephra marker layer in ODP
1695-1033B-5H6

(Blais-Stevens et al., 2001).
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Caution is advised when interpreting
ancient laminated rocks. Laminations
can also result from bedload transport.
(A) Light-microscopic image of
laminations resulting from sediment
accumulation via migrating floccule ripples
in a flume experiment. Red laminae are due
to addition of spikes of powdered hematite
to the flume current. (B and C) Scanning
electron microscopic images of dried and

. lon-milled
- flume deposits
= from an experiment with a clay and silt Blais-Stevens et al., 2001. Marine Geology 174, 3-20.
mixture; laminae of coarse silt indicate Chang et al., 2003. Palaios 18, 477-494.
the segregation of coarse silt from clay Dallimore et al., 2005. Marine Geology 219, 47-69.
floccules during bedload transport. Dean & Kemp, 2004. P3 213, 207-229
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