Under the glacier, the groundwater - the case of Skálafell area, Iceland

Aude Vincent(1), Jane Hart(2), Clément Berry (1)
(1) Avignon University, France (2) University of Southampton, UK

Groundwater hydrodynamic understanding
Hydrodynamic response to climate change?

Objectives
Role in the formation of offshore fresh groundwater stocks in littoral areas?

Hydrological balance

Glacier area

M: Glacial melt (mm/y) minus sublimation, ie en- and subglacial flow
R: Runoff (mm/y)
RCH: recharge (mm/y)

2012-2013:
M – R = 803 - 118 = 685 mm/year
Recharge to groundwater

Ice-free area

P: precipitation (mm/y)
ETP: evapotranspiration (mm/y) from Thornthwaite
S: soil storage

2012-2013:
P – ETP - S = 1283 -172 -70
R+ RCH = 1043 mm/year

Model results
• Reasonable piezometry with K = 2.10^{-4} m.s^{-1}
• Rivers network correction thanks to topographic map and satellite image, necessary to get a reasonable piezometry, and extrapolation of a drain under the glacier:
 Strong surface hydrology-hydrogeology coupling
• Water going to the sea through offshore spring or forming an offshore freshwater stock: 16 Mm³/year

Perspectives
Till grain texture currently studied: precision of permeability value
Field observations and measurements to be carried out: Onland/offshore springs? Piezometry? Geological geometry?
Effective connection of lakes and rivers to groundwater?
Further modelling: precision and test of others hypothesis, e.g. existence of a regional groundwater reservoir inland, under the Vatnajökull?
Ongoing application for funding (ANR): GlacAq project.