

Sequential assimilation of satellite-derived vegetation and soil moisture products:

LDAS-Monde over the Euro-Mediterranean area

Albergel C., Munier S., Leroux D., Dewaele H., Fairbairn D., Barbu A. L., Gelati E., Dorigo W., Mahfouf, J.-F., Faroux S., Le Moigne P., Decharme B. and Calvet J.-C.

clement.albergel@meteo.fr

European Geosciences Union - General Assembly 2017 Vienna | Austria | 23–28 April 2017 EGU2017-3039

 LDAS-Monde : Integration of satellite observations into SURFEX, fully coupled to hydrology

- LDAS-Monde : Integration of satellite observations into SURFEX, fully coupled to hydrology
 - ISBA-A-gs : simulates the diurnal cycle of water and carbon fluxes, plant growth and key vegetation variables on a daily basis
 - Multi-layer, CO₂-responsive version

(Calvet et al., 1998, 2007, Gibelin et al., 2006)

- LDAS-Monde : Integration of satellite observations into SURFEX, fully coupled to hydrology
 - CTRIP : TRIP based river routing system with CNRM developments for global hydrological applications
 (Oki and Sud, 1998, Decharme et al., 2008, 2010)

LDAS-Monde : Integration of satellite observations into SURFEX, fully coupled to hydrology

Open-loop & Analysis experiments over 2000-2012
(Spin up : 20 times 1000 + 1000 1000)

(Spin-up : 20 times 1990 + 1990-1999)

Model	Domaine	Atm. Forcing	DA Method	Assimilated Obs.	Observation Operator	Control Variables	Additional Option
ISBA Multi-layer soil model CO ₂ -responsive version (Interactive veg.)	Europe and the Mediterranean basin (0.5°)	Earth2Observe/ WFDEI (Schellekens et al., 2017)	SEKF	SSM LAI	Second layer of soil (1-4cm) LAI	Layers of soil 2 to 8 (1-100cm) LAI	Coupling with CTRIP (0.5°)

ISBA daily coupling with CTRIP

ISBA to CTRIP : runoff, drainage, groundwater and floodplain recharges CTRIP to ISBA : water table depth/rise, floodplain fraction, flood potential infiltration

Open-loop & Analysis experiments over 2000-2012
(Spin-up : 20 times 1990 + 1990-1999)

Model	Domaine	Atm. Forcing	DA Method	Assimilated Obs.	Observation Operator	Control Variables	Additional Option
ISBA Multi-layer soil model CO ₂ -responsive version (Interactive veg.)	Europe and the Mediterranean basin (0.5°)	Earth2Observe/ WFDEI (Schellekens et al., 2017)	SEKF	SSM LAI	Second layer of soil (1-4cm) LAI	Layers of soil 2 to 8 (1-100cm) LAI	Coupling with CTRIP (0.5°)

ESA-CCI SSM v03.0

GEOV1 LAI

- SEKF : uses finite differences in the observation operator Jacobians to relate the observations to the model variables
- Model sensitivity to the observations (24h assimilation window)

2000-2012	$\frac{\partial SSM}{\partial LAI}$	$\frac{\partial SSM}{\partial w_2}$	$\frac{\partial SSM}{\partial w_3}$	$\frac{\partial SSM}{\partial w_4}$	$\frac{\partial SSM}{\partial w_5}$	$\frac{\partial SSM}{\partial w_6}$	$\frac{\partial SSM}{\partial w_7}$	$\frac{\partial SSM}{\partial w_8}$
Median								
	$\frac{\partial LAI}{\partial LAI}$	$\frac{\partial LAI}{\partial w_2}$	$\frac{\partial LAI}{\partial w_3}$	$\frac{\partial LAI}{\partial w_4}$	$\frac{\partial LAI}{\partial w_5}$	$\frac{\partial LAI}{\partial w_6}$	$\frac{\partial LAI}{\partial w_7}$	$\frac{\partial LAI}{\partial w_8}$
Median								

Adapted from Decharme et al., 2013, only the first 8 layers of soil (over 14) are represented

- SEKF : uses finite differences in the observation operator Jacobians to relate the observations to the model variables
- Model sensitivity to the observations (24h assimilation window)

2000-2012	$\frac{\partial SSM}{\partial LAI}$	$\frac{\partial SSM}{\partial w_2}$	$\frac{\partial SSM}{\partial w_3}$	$\frac{\partial SSM}{\partial w_4}$	$\frac{\partial SSM}{\partial w_5}$	$\frac{\partial SSM}{\partial w_6}$	$\frac{\partial SSM}{\partial w_7}$	$\frac{\partial SSM}{\partial w_8}$
Median	-0.0010	0.1719	0.1543	0.0694	0.0275	0.0043	0.0006	0.0001
	$\frac{\partial LAI}{\partial LAI}$	$\frac{\partial LAI}{\partial w_2}$	$\frac{\partial LAI}{\partial w_3}$	$\frac{\partial LAI}{\partial w_4}$	$\frac{\partial LAI}{\partial w_5}$	$\frac{\partial LAI}{\partial w_6}$	$\frac{\partial LAI}{\partial w_7}$	$\frac{\partial LAI}{\partial w_8}$
Median	0.2220	0.0006	0.0015	0.0032	0.0068	0.0038	0.0011	0.0006

- Assimilation of SSM
 - LDAS will be more effective in modifying SM from the first layers of soil as model sensitivity to SSM decreases with depth
- Assimilation of LAI
 - LDAS will be more effective in modifying SM from layers where most of the roots are present (w₄₋₆, 10-60cm)

- **Type_A** [~0] : Model dynamic is almost not sensitive to the observations
- Type_B [0.2-0.8]: Final offset is only a fraction of the initial perturbation indicating that the model dynamic is strongly dissipative
- Type_C [~1]: Perturbation of the initial state results in a very similar offset at the end of the assimilation window, the model dynamic is close to the identity

- **Type_A** [~0] : Model dynamic is almost not sensitive to the observations
- Type_B [0.2-0.8] : Final offset is only a fraction of the initial perturbation indicating that the model dynamic is strongly dissipative
- **Type_C** [~1] : Perturbation of the initial state results in a very similar offset at the end of the assimilation window, the model dynamic is close to the identity

Page 11

European Geosciences Union - General Assembly 2017

- **Type_A** [~0] : Model dynamic is almost not sensitive to the observations
- Type_B [0.2-0.8] : Final offset is only a fraction of the initial perturbation indicating that the model dynamic is strongly dissipative
- Type_C [~1] : Perturbation of the initial state results in a very similar offset at the end of the assimilation window, the model dynamic is close to the identity

European Geosciences Union - General Assembly 2017

(†)

BY

CC

 LDAS-Monde analysis impact: Evapotranspiration (top) and Gross Primary Production (bottom)

 LDAS-Monde analysis impact: Evapotranspiration (top) and Gross Primary Production (bottom)

RMSD(Analysis,FLUXNET-MTE)-RMSD(Model,FLUXNET-MTE)_R(Analysis,FLUXNET-MTE) - R(Model,FLUXNET-MTE)

CC II

 Evaluation of analysis impact 2000-2010: grain yield over France vs. aboveground biomass 45 sites (Agreste portal, http://agreste.agriculture.gouv.fr)
Inter-annual variability

Analysed Biomass shows better R and RMSD than that of the open-loop

Evaluation of non-direct analysis impact 2000-2010: River discharge (Q)
Q is scale to the drainage area, sub-basin > 10000km², 4-yr of data
83 stations, 8 with Eff. Increase > 0.05 (3 < 0.05)

Neutral to positive impact

European Geosciences Union - General Assembly 2017

CC

Conclusions and perspectives

- LDAS-Monde: Integration of satellite observations into SURFEX, fully coupled to hydrology
- Only system able to sequentially assimilate vegetation products such as LAI together with SSM observations
- Positive impact on Evapotranspiration, Gross Primary Production and above ground Biomass, neutral to positive on river discharge

Issues :

- Assimilation of LAI is more beneficial than assimilation of SSM (CDF matching)
- LAI can be used to analyze RZSM but sampling time (10 days) is affected by clouds
- Solutions :
 - Use vegetation information in ASCAT σ_0 (not affected by clouds)
 - Observation operator of ASCAT σ_0 using a multi-layer soil model
 - PhD work starting at CNRM in 2017 (looking for candidates !)

CC

Sequential assimilation of satellite-derived vegetation and soil moisture products:

LDAS-Monde over the Euro-Mediterranean area

Albergel C., Munier S., Leroux D., Dewaele H., Fairbairn D., Barbu A. L., Gelati E., Dorigo W., Mahfouf, J.-F., Faroux S., Le Moigne P., Decharme B. and Calvet J.-C.

clement.albergel@meteo.fr

European Geosciences Union - General Assembly 2017 Vienna | Austria | 23–28 April 2017 EGU2017-3039