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Main take-home points:
 New framework constrains the dust direct 

radiative effect (DRE) using experimental 
and observational constraints

 Bias towards fine dust causes models to 
overestimate dust cooling

 Dust DRE is about half of AeroCom 
models’ estimate (~-0.20 W/m2)



What determines the global 
dust direct radiative effect (DRE)?
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 Global extinction of SW radiation by dust 
1. Globally-averaged dust optical depth

 Fraction of extinction produced by scattering (cooling) and 
absorption (warming)
2. Globally-averaged atmospheric dust size distribution
3. Globally-averaged atmospheric dust optical properties

 LW interactions (warming) that accompany the SW extinction
2. Globally-averaged atmospheric dust size distribution
3. Globally-averaged atmospheric dust optical properties

 Efficiency with which SW and LW interactions are converted to DRE
4. Radiative effect efficiency
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Are climate model estimates of dust direct 
radiative effect biased?

 Assessments of dust direct radiative effect (e.g., AeroCom and IPCC 
AR) are currently based on global climate model simulations

 Reliance on models might be problematic, because models 
need to assume specific values for uncertain dust properties, 
such as optical properties and size at emission
 Models do not represent experimental uncertainty in dust 

properties and abundance
 Chosen values are sometimes inconsistent with experimental 

constraints

 model-simulated dust DRE might be affected by substantial biases



 I propose to instead use model results only when 
experimental constraints are not available
 For instance, to simulate the radiative effect efficiency

 Other quantities can be constrained more 
accurately with measurements and observations
 For instance dust size distribution and global dust optical 

depth
 Direct use of experimental constraints reduces 

effects of biases in assumed dust properties and 
abundance on the resulting dust DRE

Is there a better way? 
A new theoretical framework



 Extinction of SW radiation by dust is quantified by 𝜏𝜏𝑑𝑑, the globally-averaged 
dust aerosol optical depth at 550 nm

 𝛀𝛀 is radiative effect efficiency with which optical depth is converted to 
radiative effect at top of atmosphere
 Depends on Earth’s albedo, 4D distribution of dust, temperature profile, clouds, 

etc.  needs to be estimated with global model
 Must integrate over particle size because Ω depends strongly on particle 

size: small dust cools, coarse dust warms
 Also must separate SW and LW components

 Framework separates what needs to be simulated with global 
models (𝛺𝛺) from what can be constrained with measurements and 
observations (𝑑𝑑𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
)
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 Dust direct 
radiative effect 
(DRE) is caused 
by extinction 
(scattering + 
absorption) of 
radiation

Theoretical framework for constraining 
the dust direct radiative effect



Radiative effect efficiency
 Radiative effect 

efficiency (REE) from 
simulations by four 
leading climate models

 SW REE increases 
with D (becomes more 
warming) 
 Largely because greater 

fraction of extinction 
due to absorption

 LW REE positive, and 
increases as D become 
comparable to LW 
wavelength in 
atmospheric window 
(~8 – 13 um)

SW

LW

From Kok et al., Nature Geoscience (2017)



What is the global dust optical depth 
size distribution, 𝒅𝒅𝝉𝝉𝒅𝒅/𝒅𝒅𝒅𝒅?
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 Size distribution of global 
dust AOD depends on:
1. Global dust aerosol optical 

depth
2. Globally-averaged 

atmospheric dust size 
distribution

3. Globally-averaged 
extinction efficiency



Constraints on global dust AOD and 
extinction efficiency

 Ridley et al. (ACP, 2016) recently 
constrained the global dust AOD 
 From combination of MODIS and MISR 

satellite retrievals, AERONET data, and 
global model simulations

 Dust AOD = 0.030 ± 0.005
 Consistent with AeroCom ensemble 

result of 0.028 ± 0.011

 Used range of measured dust shapes 
and optical properties to calculate 
corresponding range in globally-
averaged Qext (D) (e.g., Reid et al., 2003; 
Kandler et al., 2007; Chou et al., 2008)

From Ridley, Heald, 
Kok, and Zhao, ACP, 

16, 15097-15117, 2016



What is the size distribution of 
atmospheric mineral dust?
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 Globally-averaged size 
distribution of 
atmospheric mineral 
dust depends on:
1. Globally-averaged size 

distribution at 
emission

2. Globally-averaged size-
resolved dust lifetime



Globally-averaged emitted dust size 
distribution

 7 studies of size distribution of emitted dust
 Limited dependence on wind speed and soil properties (Gillette, 1974; 

Kok, ACP, 2011; Rosenberg et al., 2014)
 Each data set is a measure of globally-averaged emitted dust size distribution

 Used statistical model (combination of maximum likelihood and 
bootstrap methods) to get most likely emitted size distribution 
and 95% confidence interval 

From Kok et al., Nature Geoscience, 2017



Globally-averaged size-resolved dust lifetime
 No direct observational constraints

 Best way to constrain T(D) is through compilation of global model 
results

 Obtained size-resolved dust lifetime from 9 (AeroCom) global models

 Most likely dust lifetime and 95% confidence interval from 
maximum likelihood and bootstrap methods

From Kok et al., Nature Geoscience, 2017



Globally-averaged size distribution of 
atmospheric dust

 Global models have 
bias towards fine 
dust!

X

=
From Kok et al., Nature Geoscience, 2017



Models overestimate extinction by fine dust, 
underestimate by coarse dust

 Combining constraints 
yields 𝒅𝒅𝝉𝝉𝒅𝒅

𝒅𝒅𝒅𝒅

 Models overestimate 
extinction at small D 
(cooling), underestimate 
at large D (warming)

 Current (AeroCom) 
models overestimate 
cooling from dust DRE!

×

=
From Kok et al., Nature Geoscience, 2017
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Constraints on global dust DRE

×
=

 Can now calculate DRE 
using 𝑑𝑑𝜏𝜏𝑑𝑑/𝑑𝑑𝑑𝑑 from:
1. AeroCom models 
2. Our constraints

+ ][
From Kok et al., Nature Geoscience, 2017



Constraints on global dust DRE

× =

 DRE using 𝑑𝑑𝜏𝜏𝑑𝑑/𝑑𝑑𝑑𝑑 from 
AeroCom models consistent 
with published AeroCom 
estimates (stars)

 Correcting fine dust bias 
~halves the DRE cooling:
1. Less SW cooling (~0.15 

W/m2) because of less fine 
dust

2. More LW warming (~0.10 
W/m2) because of more 
coarse dust

 Constrained DRE to -0.20   
(-0.48 to +0.20) W/m2

 Propagated all uncertainties in 
analysis

 ~one-in-four chance that 
DRE is actually net 
warming! From Kok et al., in review



Summary and conclusions
 Developed new framework to 

constrain dust DRE
 Directly leverages experimental / 

observational constraints on dust 
properties and abundances

 Reduces bias in DRE

 Models have too much fine 
(cooling) and too little coarse 
(warming) dust
 Current (AeroCom) models 

overestimate dust cooling!

 Correcting ~halves the dust 
DRE to -0.20 W/m2

 ~one-in-four chance that dust 
DRE net warms the planet



Thank you!
Thoughts? Comments?  jfkok@ucla.edu
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Main take-home points:
 New framework constrains the dust direct radiative effect (DRE) using 

experimental and observational constraints
 Bias towards fine particles causes current (AeroCom) models to 

overestimate dust cooling
 Dust DRE is about half of AeroCom models’ estimate (~-0.20 W/m2)
 ~One-in-four chance that dust DRE net warms the climate
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