

Assessment of great ocean currents as a source of renewable energy using recent OGCM simulations of the global ocean

Bernard Barnier^{1,2} IGE-Grenoble Anastasiia Domina^{1,4} NOC-Liverpool

Thierry Maitre³, Jean Marc Molines¹, Thierry Penduff¹, Julien Le Sommer¹, Pierre Brasseur¹, Sergey Gulev²

1 – IGE	Institut des Géosciences de l'Environnement, Grenoble.
----------------	--

- 2 **IORAS** Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow
- 3 **LEGI** Laboratoire des Ecoulements Industriels, Grenoble
- 4 **NOC** National Oceanography Center, Liverpool

Acknowledgments

OUTLINES

- 1 Introduction
- 2 Modelling approach
- 3 Results
- 4 Perspectives

Large variety of approaches to estimate the potential of ocean currents as source of electrical power

Current speed at 18 m depth from a high resolution (< 10 km) model

1. Introduction 1/4

Theoretical Available Power

$$TAP = \frac{1}{2}\rho \cdot A \cdot V_0^3$$

Harnessable Power

$$HP = \frac{1}{2}\rho \cdot A \cdot u^3$$

Practical Harnessable Power

$$PHP = E_{ff} \cdot A_T \cdot HP$$

Hasen (2008), McGowan et al., 2002)

- V_0 : Current speed from observations or models with no turbine in the flow
- *u* : Current speed flowing through in the presence of a turbine
 - : Turbine efficiency (< 0.59 Betz limit).

 E_{ff}

 A_{τ}

: Effective Power Plant Ratio (%) (related to internal power plant design).

1. Introduction 1/4

Hasen (2008), McGowan et al., 2002)

1. Introduction 3/4

Previous work of that nature (far for exhaustive papers published in the last 3 years)

Assessment of the total energy that can extracted from a large portion of the current.

Use of idealized models (1 or 2 layer, rectangular geometry, constant zonal wind) **EPU's are represented by a drag** applied to a portion of the current (100 km)

Yang et al (2013)

: **44 GW** for the Gulf Stream system

Yang et al. (2014): 4 to 6 GW in Florida Current increased to 18 GWif the entire portion of the GS along the US coast.

San (2016) : 10 GW by turbines distributed over a length scale of 100 km along WBC.

What is the value of these estimates as the electrical power output could be significantly reduced by engineering and technical constraints?

Previous work of that nature (far for exhaustive papers published in the last 3 years)

Theoretical calculations based on <u>observed</u> current estimates

Chang et al., (2015) use 6-hourly 15 m depth currents derived from surface drifters.

- Define an index that identifies "favourable locations".
- Identify possible sites along the Kuroshio.

Limitation:

upstream effects of a large EPU on the current must be considered

Our Study:

Attempt to go one step forward and include Current/EPU interactions in identifying most favorable locations and assessing the Harnessable Power

2 - Modelling approach: twin model simulations

2.1 - Simulate the great ocean currents for a long period (1979-2011)

• with a state of the art realistic numerical ocean circulation model

2.2 - Use 5 years of model current statistics (2007-2011) to:

- identify regions of maximum TAP based on a criterion
- select precise location for EPU implementation.
- **2.3 Implement virtual EPUs**
 - 16 EPUs implemented at selected locations
 - run the model again for a full year (2008)

Assess impact of EPUs by comparing the Turbine and No-Turbine simulations

2.1 - Simulate the great ocean currents for a long period (1979-2011)

• with a state of the art realistic numerical ocean circulation model (<u>NO TIDES</u>).

20-40 m depth range						
ADCP	S	pee	d			
Mean	:	1.5	1 :	m/s		
Min	:	0.9	9	m/s		
Max	:	2.0	8	m/s		
Std	:	0.2	5	m/s		
ORCA12 Speed						
Mean	:	1.5	0	m/s		
Min	:	1.2	3	m/s		
Min Max	: :	1.2 1.7	3 : 1 :	m/s m/s		

ORCA12 Model

Jointly developed and used by

- DRAKKAR consortium (CNRS, IFREMER, NOCS, UKMO, GEOMAR)
- COPERNICUS Marine Services (CMEMS)

Code: NEMO

- 1/12° resolution (10 km to 4 km)
- Driven by DFS5 forcing (based on ERAinterim reanalysis)

2. Modelling Approach 2/5

No-Turbine

simulation

2. Modelling Approach 3/5

2.2 - Use 5 years (2007-2011) of the No-Turbine simulation to:

- <u>Calculate TAP</u> and identify regions of <u>maximum TAP based on a criterion</u>
- select precise location of EPUs.

Criterion for EPU location

- Distance to coast < 50 km
- In the depth range 20 50 m:
 - 5 year mean current speed U > 0.8 m/s
 - Steadiness of speed and direction

2007-2011

Depth range: 20,04 - 46,55 m

Current Speed - simulation with no EPU

Coordinates: lon 141.0E, lat 41.65N

- 42 locations favourable to implement virtual EPUs are identified : 🔵 + 🛑
- 16 retained where **EPUs** has been implemented

2.3 – Implement <u>Virtual EPUs</u> and <u>Run the "Turbine</u>" simulation for one year (2008).

The model is re-run for one year (2008) with the drag force acting at the selected grid-points

Virtual EPUs are represented by a Quadratic Drag Force added to the model momentum equation at the location (lon, lat, depth) that the EPU is assumed to occupy.

Drag Force
$$F$$
 = Thrust T
 $F = \rho C_D L^2 u^2 = T = \rho A u^2$

$$A = L \cdot \Delta z$$

$$C_D = \frac{\Delta z}{L} \qquad \qquad \mathbf{C}_D = 2.6 \times 10^{-3}$$

3. Compare Turbine (HP) and No-Turbine (TAP) simulations to assess

3 – Results 1/5

Case of small reduction - **Tsugaru Strait (North Japan)**

3 – Results 3/5

Case of large reduction - North Luzon Island (Philippines)

NO-TURBINE

Large energy potential: **TAP = 833 MW**

TAP = 727 MW

Large Reduction 86%: HP = 117 MW

54%: **HP = 332 MW**

TURBINE

Upstream effect of the EPUs: shift of the main path of the current from the west side to the east side of the Caminguin Island

4 – Conclusions

- Ocean models used for operational forecast can be used to simulate the feedback of EPUs on the flow.
- Upstream effect of an EPU could be very important, changing the path of the current.
- Every "spot" with a large potential (TAP) is a particular case.
- Long time series are necessary (1 y or more).
- Large uncertainty of the drag force mimicking the effect of the "virtual EPU"

Perspectives

- Ocean modelling tools are ready to go forward
 - Global operational models (CMEMS) can provide realistic boundary conditions to large scale regional models.
 - Grid refinement techniques allow to get down to very high resolution (2km 400 m 80 m)
 - EPU models should be "embedded" into the domain of finest resolution
- Operational forecasts would allow real time management of resources

