

EGU2017-3805 NH5.1/OS4.13/SM2.6 Thu, 27 Apr, 14:30–14:45

DTW (Dispersive Tsunami Wave): a new tool for computing the tsunami dispersion travel time.

Dominique Reymond

CEA/DASE/LDG, Papeete, Tahiti, French Polynesia (reymond.d@labogeo.pf)

Introduction/motivations

- Compute tsunami travel times including the dispersion effects over a wide range of periods.
- Quantify the part of dispersion effects in the coda of tsunami: separation of dispersion effects of reflection, diffraction.
- Forecast late arrivals of tsunami waves with possible resonances for a given bay at higher frequencies than the gravity mode.

Other existing tools

- TTT (Tsunami Travel Time, Paul Wessel, 2009):
- Very usefull, rapid, simple
 - **Only gravity mode** (shallow water approximation)
- Numerical modeling
- The most precise
- Boussinesq modeling includes the complete dispersion
 - Computation time may be prohibitive

The basis: relation of dispersion

The complete relation for hydraulic waves:

$$\omega^{2} = k^{2} \left[\frac{g\lambda}{2\pi} + \frac{2\pi\sigma}{\rho\lambda} \right] \tanh(kH)$$

The **second term** is totally negligible: σ superficial stress = 0.072 N/m # 10⁻⁴ for λ = 1 m

Thus : $\omega^2 = gk \tanh(kH)$, H depth, k : wave number, ω pulsation

Rewritten as **phase velocity** dispersion: $c^2 = g/k \tanh(k H)$

While the **group velocity** is related by: $U = c - \lambda (dc / d\lambda)$

Yielding:

$$U = c - \lambda \, \frac{d \left(g/k \, \tanh k H \right)^{1/2}}{d\lambda}$$

The basis: relation of dispersion (cont).

After **derivation**:

$$U = \frac{c}{2} + \frac{gH}{2c} \left(1 - \tanh^2 kH\right)$$

Asymptotic properties:

1) The case of long period (long wave-length, shallow water)

$$\lim_{kH \to 0} U = \frac{c}{2} + \frac{gH}{2c} = \frac{c}{2} + \frac{c}{2} = c = \sqrt{gH}$$

2) The case of **short wave-length**: propagation in deep water

$$\lim_{kH\to\infty} U = \frac{c}{2}$$

U varies simply in the interval [*c/2, c*], with *c* given by:

 $c = (g/k \tanh(k H))^{1/2}$

The longest periods arrive always the first

The **gravity waves** (shallow water approximation) arrive **always the first**. or:

Dispersed waves are always slower than gravity waves.

The algorithm to compute (c,U)

* Having a **bathymetry grid** (digital data)

* Compute the ray path along great circles source-receivers (spherical geometry)

* Extract the ocean depth across each elementary bloc of the grid.

Bathymetry along the great circle

The algorithm to compute (c,U) continue

* Having the **bathymetry along the ray path:** {*dH*_i}

DO

for each **period T**:

for each **small bloc** of the grid **along the ray**:

- 1. Estimate the **phase-velocity** for a **given period** (T): $c_i = fct(H_i, T)$
- 2. Calculate the **group-velocity** $U_i(T)$.
- 3. Calculate the propagation time for an unitary bloc : $dt_i = d\delta_i / U_i$.

4. Sum the elementary propagation times along the ray.

Parenthesis:

 $\omega^2 = gk \tanh(k H)$

calculation of the phase velocity, at a given period T, depth H

rewritten as:
$$c=rac{gT}{2\pi} anh(rac{2\pi H}{cT})$$

Transcendental equation solved *iteratively*

Computation of **travel times**: First tests with **Chile 2010**: with a point source

Results are deceiving : the source is not a point source !

Tobs	Tcal	DART	Difference:
2010-02-27 09 :41 :00	2010-02-27 10 :13 :00	32412	32 min
2010-02-27 15 :19 :00	2010-02-27 15 :51 :30	51406	32 min
2010-02-27 18 :20 :00	2010-02-27 19 :05 :08	51426	45 min

CC I

Taking into account the source dimensions

From scaling laws⁽¹⁾ : Length L = $\beta M_0^{1/3}$, $\beta = 1.32E-2$ W = L/2 , W < 200 km

Focal geometry: NP₁:{ ϕ , δ , λ }

* **Try each points source** (*A*,*B*,*C*,*D*,*H*)

* Retain the **minimum** of propagation time

The **improvement** is spectacular

Tobs	Tcal	DART
2010-02-27 09 :41 :00	2010-02-27 09 :41 :23	32412
2010-02-27 15 :19 :00	2010-02-27 15 :24 :03	51406
2010-02-27 18 :20 :00	2010-02-27 18 :24 :08	51426

Difference:

0 min 4 min

4 min

⁽¹⁾ refs: Kanamori & Anderson 75, Geller 76, Wells & Coppersmith, 94.

Example of results for Chile 2010: DART 21413

DART 21413, distance: 141°

Arrival tim	ne	Freq hz	Per s
2010-02-28	03:45:17	2.778e-04	3600
2010-02-28	03:45:40	3.333e-04	3000
2010-02-28	03:46:12	4.000e-04	2500
2010-02-28	03:46:59	4.800e-04	2083
2010-02-28	03:48:07	5.760e-04	1736
2010-02-28	03:49:45	6.912e-04	1447
2010-02-28	03:52:07	8.294e-04	1206
2010-02-28	03:55:31	9.953e-04	1005
2010-02-28	04:00:27	1.194e-03	837
2010-02-28	04:07:35	1.433e-03	698
2010-02-28	04:17:57	1.720e-03	581
2010-02-28	04:33:03	2.064e-03	485
2010-02-28	04:55:11	2.477e-03	404
2010-02-28	05:27:52	2.972e-03	336
2010-02-28	06:16:40	3.566e-03	280
2010-02-28	07:30:33	4.280e-03	234
2010-02-28	09:24:36	5.136e-03	195
2010-02-28	12:25:01	6.163e-03	162
2010-02-28	17:16:15	7.395e-03	135
2010-03-01	01:02:58	8.874e-03	113
2010-03-01	12:33:19	1.065e-02	94
2010-03-02	03:00:40	1.278e-02	78
2010-03-02	18:54:03	1.534e-02	65

Examples of results for the tide-gauges

0.000

00:00:00

06:00:00

12:00:00

18:00:00

- The **algorithm** too simple- is not adapted.
- The computed **propagation time** are dramatically **wrong**:

calculated arrivals: # 6 hours late !

00:00:00

46409 27/02/2010 0h0m0s

06:00:00

12:00:00

18:00:00

0.000

Solution for non-direct path

- Construction of a family of deviated rays by step of 5° from the great circle.
- Retain **minimum propagation** time.

Better estimation of the arrival time

Final results and comparison with TTT

TTT: Tsunami Travel Time (P. Wessel, 2009) **DTW**: Dispersive Tsunami Wave (this study)

- On the average: **O-C** are larger for **TTT** than for **DTW**
- Only 2 values > 20 minutes (non direct rays)
- Positive values of O-C for stations in a very shallow lagoon (WAKE, RANGIROA, RIKITEA, ...)
- Works well for direct path

Comparison with **numerical simulations** (Saint-Venant code)

- Artificial dispersion well produced until 8 mHz (125 s) by Saint-Venant code
- Limit at 12,5 mHz probably given by the spatial step imposed by the grid (dx=4') : 2 x dx= 8' # 15 km

with H = 4000 m depth, T = λ/c = 15 000/(gH)^{1/2}= 75 s

1/T = 13 mHz

Resonance, dispersion, coda and others

Excitation of the **resonance** by the **dispersive** wave

Other arrival: Not dispersion

Hiva Oa, Marquesas 4 months record

Japan, Tohoku 2011

Resonance **0.005 Hz = 200s** excited by the **late arrival 3h40 after first arrival time**

0.004 Hz = 250s excitation by the late arrival 2h30 after first arrival time

Conclusions: *DTW* (*Dispersive Tsunami Wave*)

- An implemented tool for computing the arrival times of tsunami, including continuous dispersion from 3600 s to 65 s.
- Method uses projection of a great-circle on the bathymetric profile.
- **Results** for Chile 2010 show the **necessity** to take into account the **source dimensions** (#500x 200 km for Chile 2010).
- Non direct path partially resolved with construction of deviated rays from the great circle.
- Resonances and dispersion effects observed in Tahiti and Marquesas bays, 3 – 4 hours after first arrival.
- To do:
 - sensitivity to **bathymetric** resolution
 - Other tests with **other sources**
 - True ray path algorithm

