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Figure 2. a. Clinopyroxene (Cpx), serpentine (Sp) and opaque minerals within
wehrlite, b) uralitized clinopyroxene in the serpentinized ultramafic rock, c)
clinopyroxene (diopsidic augite comp.), serpentine and opaque mineral associa-
tion, d) mackinawite inclusions in pentlandite (iron-nickel sulfide) , e) dissemi-
nated pyrite and magnetite grains, f) ring-shaped magnetite surrounding silicate
minerals.
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Figure 1. Geology of the study area and sample locations (Yilmaz and Yilmaz 2004)
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In this study, we present new data on whole rock and spinel chemistry of peridotitic rocks in the
Sivas province, eastern Turkey. The spinel chemistry and petrological characteristics are used to
assess provenance of ophiolitic complex in the region. Our data are also compared to those of

Gunes Ophiolite which was
emplaced in the late Creta-
ceous starts at the bottom
with tectonites that consist of
serpentinized harzburgites.
They are overlain by irregular
segregations of pyroxenite
levels and cumulate peridot-
ites that contain wehrlite and
dunite lenses. The series
continues to the top with cu-
mulates and layered- and
massive-gabbros, sheet dyke
complex and a thin pillow-
lava level (Yilmaz and Yilmaz
2004).

4. Mineral chemistry of spinels
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Figure 5. Major oxide relations for chromites, ferritchromites and Cr-magnetites.

There is an inverse correlation between MgO-AlL3-Cr,0O5vs. Fe,0;
concentrations of chromites, ferritchromites and Cr-magnetites.
Chromites are altered to first ferritchromite and then to Cr-

magnetite as indicated by increasing Fe,O5 contents and decreas-
ing MgO, Al;O3and Cr,O, concentrations

-Sivas Region, Eastern Turkey
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The core compositions of Cr-
spinels are plotted in the Cr# — Mg#
diagram (Figure 6 b). Cr# and Mg#
values are positively correlated and
consistent with those of forearc
peridotites whilst altered zones
depict composition of chromite spi-
nels (magnetite) in metamorphic
rocks. According to the model of
Hirose and Kawamoto (1995), Cr-
spinel compositions vyield >35%
partial melting and formation in a
supra-subduction zone setting.
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Chromite with up to 51% dominates the composition of core. It is followed in decreasing order by picromite
from 17 to 32%, hercynite from 10 to 18%, magnetite 2 to 14% and spinel from 3 to 12%. As a result of al-
teration, mineral composition at the rims is rather diverse where chromite is lowered to nearly 20% and
magnetite is the dominant phase with an abundance of about 90%.
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» \When compared to selected high-Cr chromites in Turkey, Divrigi spinels are found to have slightly lower

Fe,O5and AlO, contents and Fe™/Fe™ ratios. Like some other Turkish spinels, Divrigi samples were crystallized
from a boninitic melt in a SSZ environment which is supported by intense degree of partial melting (~>45%)
computed for spinels. Parental melt compositions of Divrigi spinels computed using experimentally determined
(FeO/MgO)melt, (Al,O3)melt and (TiOo)melt values point out the arc setting which have Cr# lower than ~ 60

(usually between 10 and 40) with small to moderate amount of partial melting (5-15%).

Figure 9. Comparison of Divrigi chromites with those from various ophiolitic sequences in Turkey (see
Figure 1 for locations) a) Distribution of fresh chromites in the Al,O;-Cr,O,diagram (Franz and Wirth 2000),
b) TiOx-Cr# diagram for chromites (fields from Dick and Bullen, 1984; Jan and Windley, 1990; Arai, 1992),
c) distribution of chromites in the Al,O; vs.Fe*?/Fe™® diagram showing the distinction between supra-
subduction zone (SSZ) and mid-ocean ridge (MOR) peridotites (fields from Kamenetsky et al., 2001), d)
ALO,-TiO, diagram showing compositional spectrum of chromites (fields from Kamenetsky et al., 2001).

hydrothermal alteration induced by granite intrusion.

Al,O5; and TiO;, contents of the samples are indicative
of SSZ origin with arc trend (Figure 9d).

Divrigi samples in these plots yield an arc affinity (Figure

11b,c).



