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Figure 1. Geology of the study area and sample locations (Yılmaz and Yılmaz 2004)

Güneş Ophiolite which was 
emplaced in the late Creta-
ceous starts at the bottom 
with tectonites that consist of 
serpentinized harzburgites. 
They are overlain by irregular 
segregations of pyroxenite 
levels and cumulate peridot-
ites that contain wehrlite and 
dunite lenses. The series 
continues to the top with cu-
mulates and layered- and 
massive-gabbros, sheet dyke 
complex and a thin pillow-
lava level (Yılmaz and Yılmaz 
2004).

Figure 2. a. Clinopyroxene (Cpx), serpentine (Sp) and opaque minerals within 
wehrlite, b) uralitized clinopyroxene in the serpentinized ultramafic rock, c) 
clinopyroxene (diopsidic augite comp.), serpentine and opaque mineral associa-
tion, d) mackinawite inclusions in pentlandite (iron-nickel sulfide) , e) dissemi-
nated pyrite and magnetite grains, f) ring-shaped magnetite surrounding silicate 
minerals.     

Figure 3 . Melt-rock interaction between olivine and 
pyroxene grains.

Figure 4.    Mg/Si and Al/Si ratios of Divriği samples. 
During partial melting, the compositional variation ex-
pected is shown with black arrow (modified after Saumur 
et al., 2010) and the expected compositional change of 
residual mantle peridotites is shown as a dashed gray 
arrow which is originated from the primitive mantle 
(McDonough and Sun, 1995). 
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In this study, we present new data on whole rock and spinel chemistry of peridotitic rocks in the 
Sivas province, eastern Turkey. The spinel chemistry and petrological  characteristics are used to 
assess provenance of ophiolitic complex in the region. Our data are also compared to those of 
other Tethyan ophiolite complexes in Anatolia.
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Wehrlite pods are characteristic with marks of melt-
rock interaction that is revealed  by embayed pyrox-
ene margins, enveloped by olivine  and olivine inter-
fingering into  pyroxene.
Chromites with size in the range of 250 to 750 
micron are dark gray and show reflection colors 
darker than magnetites. As a result of progressive 
metasomatism, they are transformed  to magnetite. 
Therefore granular, euhedral chromites are rarely 
observed. During this process, Fe-Cr spinels 
(ferritchromite) were formed as interphase between 
chromites and magnetites.

Divriği peridotites plot too far from the mantle point. 
Since Al is generally compatible with mantle miner-
als it is depleted through the partial melting pro-
cess. Divriği samples are serpentinized in a SSZ 
environment and Mg/Si and Al/Si ratios of samples 
are similar to those of Himalayan and Mariana 
forearc serpentinites.

Figure 5. Major oxide relations for chromites, ferritchromites and Cr-magnetites.

There is an inverse correlation between MgO-Al O  -Cr O  vs. Fe O 
concentrations of chromites, ferritchromites and Cr-magnetites. 
Chromites are altered to first ferritchromite and then to Cr-
magnetite as indicated by increasing Fe O  contents and decreas-
ing MgO, Al O  and Cr O  concentrations

Figure 6. The core compositions of Cr-
spinels are plotted in the Mg# vs. Cr# dia-
gram (Azer, 2014). Compositions of Cr-
spinels from I: metamorphic rocks, II: fresh 
igneous rocks. The arrow represents the per-
centage of partial melting of the host peridot-
ite (Hirose and Kawamoto, 1995).

The core compositions of Cr-
spinels are plotted in the Cr# – Mg# 
diagram (Figure 6 b). Cr# and Mg# 
values are positively correlated and 
consistent with those of forearc 
peridotites whilst altered zones 
depict composition of chromite spi-
nels (magnetite) in metamorphic 
rocks. According to the model of 
Hirose and Kawamoto (1995), Cr-
spinel compositions yield >35% 
partial melting and formation in a 
supra-subduction zone setting.

Figure 7. Distribution of 

chromite and alteration prod-

ucts in spinel prism dia-

grams.
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Chromite with up to 51% dominates the composition of core. It is followed in decreasing order by picromite 
from 17 to 32%, hercynite from 10 to 18%, magnetite 2 to 14% and spinel from 3 to 12%. As a result of al-
teration, mineral composition at the rims is rather diverse where chromite is lowered to nearly 20% and 
magnetite is the dominant phase with an abundance of about 90%.

The grain showing a zoned structure con-
sists of chromite at the core transforming to 
ferritchromite along the rims. Fe  and Mg 
concentrations remain unchanged from core 
to rim while Fe  concentrations are signifi-
cantly increased but Al and Cr contents are 
notably decreased (Figure 8).

Figure 8. Profile analysis of altered chromite sample (sample no. 
N-83). Note that y-coordinateis given in mol numbers.

Figure 9. Comparison of Divriği chromites with those from various ophiolitic sequences in Turkey (see 
Figure 1 for locations) a) Distribution of fresh chromites in the Al O  -Cr O  diagram (Franz and Wirth 2000), 
b) TiO -Cr# diagram for chromites (fields from Dick and Bullen, 1984; Jan and Windley, 1990; Arai, 1992), 
c) distribution of chromites in the Al O  vs.Fe  /Fe    diagram showing the distinction between supra-
subduction zone (SSZ) and mid-ocean ridge (MOR) peridotites (fields from Kamenetsky et al., 2001), d) 
Al O -TiO  diagram showing compositional spectrum of chromites (fields from Kamenetsky et al., 2001).

As shown from Figure 9a, with the exception of a few 
Divriği samples, all the Turkish  spinels under interest 
plot within the mantle array but are clustered close to 
the arc cumulate field. Cr O   and Al O  contents of 
samples from Antalya, Southeast Anatolia, Elekdağ,  
Eskişehir and Harmancık-Orhaneli regions are slightly 
higher than those of Divriği region. 

In Cr# vs. TiO  diagram (Figure 9b), all the samples 
are grouped in a narrow site  encompassing both bon-
inite and depleted peridotite fields. 

According to Al O  vs. Fe  /Fe   diagram (Figure 9c), 
most Turkish spinels belong to supra-subduction zone 
(SSZ) peridotites. However, some of Divriği samples 
with lower Fe   /Fe   ratios and the lowest Al O  con-
tents  plot off the SSZ field. This might be attributed to 
hydrothermal alteration induced by granite  intrusion. 

Al O  and TiO  contents of the samples are indicative 
of SSZ origin with arc trend  (Figure 9d).

Figure 10. Cr# vs. Mg# diagram for selected Turkish chro-

mites.

Cr# values of Divriği spinels 
are similar with those of se-
lected high-Cr Turkish spi-
nels to some extent but their 
Mg# values differ consider-
ably possibly due to altera-
tion. All spinel samples plot 
into supra-subduction zone 
peridotites     and thus point-
ing to a podiform type ophi-
olite source (Figure 10).

 Figure 11. a) TiO -Al O  (wt. 
%) diagram constructed 
from computed melt compo-
sitions of Divriği chromites. 

Chi: Chichijima boninites, 
CV: Cape Vogel boninites, 
Tr: Troodos boninites, 
MORB: Mid-ocean ridge 
basalts, TMO: Thetford 
Mines Ophiolite

b)Al O (spinel)-Al O (melt) 
diagrams for Divriği chro-
mites and melts 

c) TiO  (spinel)-TiO  
(melt) diagrams for 
Divriği chromites and 
melts.

These results suggest a boninitic affinity for the melts that 
generated the Divriği spinels (Wilson, 1989). In the Al O  vs. 
TiO  diagram (Figure 11a), samples are plotted within the 
boninite field (Page and Barnes, 2009) and mostly overlap 
with Cape Vogel boninites (Jenner, 1981; Walker and Cam-
eron, 1983; Kamenetsky et al., 2002).  The positions of 
Divriği samples in these plots yield an arc affinity (Figure 
11b,c).

►The Divriği spinels in the Sivas province, eastern Turkey, show two distinct compositions. The chromite cores 
are represented by high Cr O  (46.50-56.24 wt. %) and very low TiO  contents (<0.3 wt. %). Cr-magnetites at the 
rims have much lower Cr O  (15.50-26.89 465 wt. %) which is accompanied by a decrease in MgO from 9.4 to 
1.2 wt. % and an increase in Fe O  from 4.0 to 55.0 wt. %. Likewise, Cr# and Mg# values also followed the same 
trend. 
►Prism diagrams built for measured spinel compositions show that chromite is the most abundant  phase com-
prising almost 50% of the core while magnetite dominates the rims with a maximum abundance of 90%. 
►When compared to selected high-Cr chromites in Turkey, Divriği spinels are found to  have slightly lower 
Fe O  and Al O  contents and Fe  /Fe   ratios. Like some other Turkish spinels, Divriği samples were crystallized 
from a boninitic melt in a SSZ environment which is  supported by intense degree of partial melting (~>45%) 
computed for spinels. Parental melt compositions of Divriği spinels computed using experimentally determined 
(FeO/MgO)melt,  (Al O )melt and (TiO )melt values point out the arc setting which have Cr# lower than ~ 60 
(usually between 10 and 40) with small to moderate amount of partial melting (5-15%).
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