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INTRODUCTION
Monitoring networks provide essential information for water resources management and
water quality, especially in areas with significant groundwater exploitation due to extensive
agricultural use. In this work, a simulation‐optimization framework is developed based on
the geostatistical method Kriging and the use of Artificial Neural Networks (ANN).

Based on existing groundwater quality mapping, the proposed optimization tool will
determine a cost‐effective observation wells network that contributes crucial information to
the water authorities. The elimination of wells that add little or no beneficial information to
the groundwater level and quality mapping of the area can be performed by using
estimations of uncertainty and statistical error metrics without affecting the assessment of
the groundwater quality. Given the high maintenance cost of groundwater monitoring
networks, the proposed tool could be used by water regulators in the decision‐making
process to obtain an efficient network design.

CASE	STUDY:	MIRES	BASIΝ,	GREECE
• Intense agricultural activity 

• Geropotamos river is crossing the area 

• Groundwater level and concentration of NO3 obtained from 43 observation wells for 3 
different hydrological periods(Wet 2008 & 2009 and dry 2009)

RESULTS
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Fig.2 – Location of the observation wells in Mires Basin

METHODOLOGY

CONCLUSIONS
The following figure compares the three most accurate theoretical semi‐variogram models for
the 2009 dry period. Both error and visual comparison result to the selection of the Spartan (SP)
model instead of theMatérn (M) and the Spherical (SPH).

Fig.3– Plot of  the experimental and three theoretical semi‐variograms

The estimation of groundwater levels in the study area and the uncertainty of them using the
Kriging methodology based on the Spartanmodel is showed in the heat‐maps below.

Fig.4– Estimation map of groundwater level

Fig.5– Uncertainty map of groundwater level estimation 

The first step is to perform the mapping of the area based on information at the existing
43 observation well locations, using the geospatial analysis method Kriging. The method
is described by the equation

where

is the estimated value

Is the weighted Kriging factor

Is the measured value

The calculation of the weights λi is based on the theoretical semi‐variogram which is
selected depending on how wellit fits to the experimental dat. In the present analysis the
selected theoretical semi‐variograms for each period are Matérn for the 2008 and 2009
wet periods and Spartan for the 2009 dry period.

Depending on the selected semi‐variograms the quality mapping of the area for each of
the aforementioned periods is conducted. The estimation of the quality values on the
locations of the observation wells are used in order to calculate statistical error metrics
(e.g. mean absolute error) and evaluate the accuracy of the estimation .

In the second step of the analysis, Artificial Intelligence will be used to approximate the
results of human reasoning by organizing and manipulating factual and heuristic
knowledge. In particular, a Artificial Neural Networks (ANN) will be developed which is
a simplified “computational model” of the biological neural network systems, having
the ability to adapt, learn, generalize and organize data.

• A Radial Basis Function Network is used as the
approximation model, with inputs equal to the number of
design variables and a single output.
• The hidden layer uses a number of nodes (the so called
centers ci) smaller than the number of the available training
patterns, in order to obtain better generalization.
• In order to have a local approximation model, only the best
fitted individuals are used to retrain in each generation the
approximation model, which evolves with the population.
• For the training process the direct learning approach is
adopted.

The nonlinear activation function G is chosen to be the
Gaussian radial basis function

The corresponding output y(x) for a xi, i = 1, L input, is:
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,Fig.1 – RBFN typology

• In areas where the network density is high, at least one observation well can be excluded
from the estimation process without significantly affecting the result.

• Preliminary results has shown that a removal of up to 10 monitoring locations does not
affect the estimated groundwater level spatial variability.

• The reposition of 4‐6 observation wells can improve the overall estimation and minimize
the uncertainty.

• Changing the position of some wells can improve the process but lacks of cost
effectiveness.


