Interactions between Arctic sea ice drift, concentration and thickness modelled by NEMO-LIM3.6

David Docquier ¹, F. Massonnet ^{1,2}, N. F. Tandon ³, O. Lecomte ¹, T. Fichefet ¹

Université catholique de Louvain

¹ Université catholique de Louvain (UCL), Belgium ² Barcelona Supercomputing Center (BSC), Spain ³ Environment and Climate Change Canada (ECCC), Canada

PRocess-based climate sIMulation: AdVances in high-resolution modelling and European climate Risk Assessment

EGU, Vienna, 28 April 2017

NASA / Kathryn Hansen

Rapid Arctic sea ice loss

PRIMAVER

Sea ice Thickness and Drift in past decades

Sea ice Drift-Strength feedback

UCL

Université catholique de Louvain

SCICEX box (Olason and Notz, 2014)

Drift vs. Concentration and Thickness: Monthly Means

SCICEX box

1979-2013

Drift vs. Concentration and Thickness: Monthly Trends 1979-2013

SCICEX box

Testing drift-strength feedback

Why Thickness h with Strength P?

1979-2013 **JFM** JAS 500 500 Number of ice-covered grid cells More $\lambda = 2.0$ $\lambda = 2.0$ More = 1.5 $\lambda = 1.5$ uniform 400 400 uniform $\lambda = 1.0$ $\lambda = 1.0$ $\lambda = 0.5$ $\lambda = 0.5$ PIOMAS PIOMAS 300 300 More More 200 200 heterogeneous heterogeneous 100 100 0 0 1.5 2.5 3.5 3 4 4.5 5 100 1.5 2.5 3 3.5 4.5 0.5 1 2 Ó.5 2 4 5 100 Sea ice thickness bin upper bound (m) Sea ice thickness bin upper bound (m)

SCICEX box

Thickness

Conclusions

- 1. NEMO-LIM3.6 evaluation is good
- 2. Relationships between sea ice drift and concentration/thickness are reasonably well represented
- 3. Higher initial ice strength leads to lower thickness due to thermodynamic feedback
- 4. Interactions between drift and strength are more complex than previously thought

Docquier et al. (2017), The Cryosphere Discussions

NSIDC / Alice O'Connor

Posters

X5.510 Barthélemy *et al.*, ITD X5.511 Raulier *et al.*, Elastobrittle rheology