Using R for Large Spatiotemporal Data Sets

Edzer Pebesma

ifgi
\ Institute for Geoinformatics

4 University of Miinster

EGU 2017, Session IE3.6, Tue, 25 apr 2017

How large are the datasets YOU analyse with R?

Current limitations:
» R: in-memory
> raster: on-disk
» dplyr: in-database
Sources of large geo-datasets:
» remote sensing (hyperspectral; time series)
> laser altimetry
» (climate) model results
Challenges:
> avoid download

» distributed storage & computing

Outlook to http://r-spatial.org developments:

1. sf: simple features for R (done)

vV vy vy VvYy

handle geometry in a list-column in a data.frame or tibble
pipe-friendly, dplyr compat, tidyverse, st_join for spatial joins
merges vector capacity of sp, rgdal, and rgeos

coordinate conversions and transformations

geom_sf support in ggplot?2

2. stars: spatiotemporal tidy arrays for R (still to do)

>

vV vy vy

multidimensional arrays with space and time among its dimensions

e.g. non-raster time series, raster time series with multiple, or mixed attributes
extend on-disk to remote, in-cloud storage (API)

pipe-based, dplyr-style workflows

develop workflow on small samples, flexibly downsampling dimensions

Both projects enjoy support from the

"R ‘consortium

http://r-spatial.org

Why replace sp with sf?

> sustainability: rewrite 15+ years code of sp, rgdal, rgeos
» use modern GDAL and GEQS libraries, and modern C4++11 & Rcpp interfaces
» implementing simple features ISO standard:

= 1:1 mapping and round tripping between R and databases, geojson, LOD, etc.
» direct Well-Known Binary (WKB) read/write and S3 is much faster than rgdal!
“tidy"” spatial analysis:

v

» data.frame based, easier to understand data structure
» implements dplyr verbs, with sticky geometry

» ggplot2 support by geom_sf

» direct DBI inteface to spatial databases

sf examples

library(ggplot2)

library (maps)

worldl <- sf::st_as_sf(map('world', plot = FALSE, fill = TRUE))
laea <- "+proj=laea +y_0=0 +lon_0=155 +lat_0=-90 +ellps=WGS84"
world2 <- sf::st_transform(worldl, laea)

fill = sf.colors(xc = factor(1:253))

ggplot() + geom_sf(data = world2, fill = fill)

> library(sf)

> nc = read_sf(system.file("gpkg/nc.gpkg", package="sf"))
> library(units)

> (a <- nc %>/ mutate(area = st_area(.)) 7>J

+ group_by(group = c(rep(1:5, each = 20))) >}

+ summarize(area = set_units(sum(area), km~2)))

VVVVVYVYV

Simple feature collection with 5 features and 2 fields
geometry type: MULTIPOLYGON

dimension: Xy
bbox: xmin: -84.32385 ymin: 33.88199 xmax: -75.45698 yma
epsg (SRID): 4267
proj4string: +proj=longlat +datum=NAD27 +no_defs
A tibble: 5 x 3
group area geom
<int> <units> <simple_feature>
1 1 22022.91 km~2 <MULTIPOLYGON...>
2 2 22866.40 km~2 <MULTIPOLYGON...>
3 3 26491.78 km~2 <MULTIPOLYGON...>
4 4 24139.21 km~2 <MULTIPOLYGON...>
5 5 31511.46 km~2 <MULTIPOLYGON...>

v

par (mar=rep(0,4))
> plot(a["area"], main = "", border = 'grey')

stars: spatiotemporal tidy arrays

Resolve R's native array limitations:

>

>
>

cannot handle heterogeneous data records
(e.g. consisting of a numeric, a logical and a
Date) like we typically have in data.frame’s,

can only deal with in-memory data, and

do not handle spatial or temporal array
dimensions, only character dimnames.

Resolve raster’s limitations:

>
>

2 dimensions are always space (=raster)

cope with n-D dense arrays, rather than 3-D
raster:

stack is either multiple colors, or multiple
times, not both

brick or stack? low level details exposed to
users

handle /0O natively (not through rgdal)

handle data sizes larger than those fitting on
local disk

S4

stars’ approach: support

>

>

array dimensions that can be space, time, can
also be e.g. spectral, simulation, model

e.g. arrays with features (1D) x timel x
time2 (2D), with timel time of prediction
and time2 forecast lag

heterogeneous records, just like data.frame
S3 data.frame objects that proxy real data,
like dplyr's database proxies

proxy data are not the first n records, but a
thinned (subsampled) version of the array,
revealing large-scale structure

dense, but both regular and irregular arrays

distributed storage, distributed computing,
using lazy, distributed evaluation

fast development times by developing the
workflow on subsampled proxy, when finished
applying it to the full data

pipe-based, dplyr-style verbs

