Dr. Pascal Kremer, University of Hohenheim, Institute of Soil Science and Land Evaluation, Emil-Wolff-Str. 27, 70593 Stuttgart Prof. Dr. Hans-Joachim Fuchs, Johannes Gutenberg-University Mainz, Institute of Geography, Johann-Joachim-Becher-Weg 21, 55099 Mainz Dr. Christian Lang, Association of Sugar Beet Farmers in Hesse and Rhineland-Palatinate, Rathenaustr. 10, 67547 Worms

Sugar beet growth in a changing climate: past, present and future trends in southwest Germany

Introduction

Historic regional climate change:

 \rightarrow **Temperature:** warming trend of ~1°C since 1901

 \rightarrow **Precipitation:** increasing annual sums; summers tend to get drier, winters tend to get moister; rising interannual variability

 \rightarrow Extended vegetation period

Changing annual weather courses result in changing production conditions for sugar beet cultivation. The study at first retrospectively investigated single climatic influential factors for sugar beet growth. Afterwards the found cause-effect correlations were used to simulate the **possible impact of the projected climate** change on sugar beet growth and cultivation practices in Southwest Germany.

Data & models:

Cultivation practice: Field trials 1975-2014: ARGE sugar beet (Worms) **Climate model²:** REMO Run 1, data stream 2 for Germany, daily resolution, without bias correction, 10x10 km raster (n = 150); periods: B: 1971-2000; K: 2021-2050; L:2071-2100 \rightarrow input for

Leaf disease model³: CERCBET1 (*Cercospora beticola*) **Ontogenesismodel:** SOWing PREDiction (SOWPRED), EMergence PREDicion (EMPRED); row CLOSure PREDicion (CLOSPRED); leaf-growth-model⁴

Results

I. Young plant development

Sowing (n=448):

Ø advance by 7,7 days Emergence (n=432): Ø advance by 14,3 days **Row closure** (n=235): Ø advance by **19,6 days** 1975-2014 (fig. 2)

 \rightarrow Sowing earlier didn't increase the late frost risk after emergence \rightarrow Climate change lead to an accelerated young plant development with positive effects for yield formation (increased light interception)

Literature:

¹CURI, J. et I. ZMORAY (1966): Beziehung klimatischer Faktoren zur Entwicklungsdauer von Heterodera schachtii in der Slowakei (CSSR). In: Helminthologia 7: 49-63 ²Max-Planck-Institut for Meteorology (2006): Climate projections of the regional climate model REMO10X: 1951-2100. Hamburg ³RACCA, P. et. E. JÖRG (2003): Prognose von *Cercospora betocola* mit den CERCBET-Modellen. In: Gesunde Pflanze 55 (3): 62-69 ⁴RICHERZHAGEN, D. (2012): Description of the leaf-growth-model. Bad Kreuznach

physio-geographic was subdivided into five

Palatinate-Saar-Nahe (Pf-S-N; n = 43)Odenwald-Spessart (OwSp; n = 19)Rhine-Main (Rh-M; n = 28)

Taunus (Tau; n = 12)

Upper Rhine (UR; n = 48)

order of ranks allows attribution to climate change

Fig. 2: Dates of sowing (n=448), emergence (n=432) and row closure (n=235) 1975-2014.

Fig. 3: Cercospora-leaf-spot disease occurrence and leaf-growth-stages for periods B, K, L. CE1 / CE50 / CE100: 1 / 50 /100 % of the fields in a region may show symptoms A1 / A2: Sowing on 1st / 15th March; B20 / B40: 20- / 40- leaf stage

 \rightarrow Earlier epidemic onset of the leaf disease; big shift between K and L

 \rightarrow Acceleration of leaf growth

Establishment of the leaf-disease in an earlier leaf-growthstage and thus a change in the host-pathogeninteraction with unknown consequences.

Conclusion / Outlook

Climate change entails positive as well as negative consequences for sugar beet cultivation. It must be a goal to use the chances associated with this observation but also to prepare cultivation for its risks. The importance of pest and disease management rises. The yield potential probably will not be effected by climate change. Yearly fluctuations could increase. To adapt a sustainable sugar beet cultivation to climate change, the achieved results should be deepened in further research and be used in the consultation of the farmers.

Poss	ible impacts of			
clima	ate change		k	
	positive impact			
	negative impact		s	owing
	no impact		L	\frown
	no statement possible			\leftarrow
$\mathbf{\epsilon}$	advancing			\checkmark
\rightarrow	shift back	1 [₩
+	increase	Jan	Feb	Ma
•	decrease			
X	no change			3
	late frost			
	water availability	+	\cdot	
	temperature			
	Beet cyst nematode			
	leaf diseases (LD)			
	leaf growth			

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

III. Beet cyst nematode (Heterodera schachtii)

 \rightarrow Heterodera schachtii is the most yield relevant soil-born pest in the study area \rightarrow Development cycle is mainly temperature driven

 \rightarrow Viable generation completed after 465 °Cd (base temperature: 8 °C)¹

 \rightarrow Acceleration of its development cycle: nowadays, more often 4, in some places even 5 generations, can be completed in one season (fig. 4)

				•••••••••••••••••••••••••••••••••••••••	
	•	y = 0,02 4	y = 0,0242 X - 44,128		
199	5	2000	2005	2010	2015

Fig. 4: Potential number of life cycles of H. schachtii per vegetation period in Mainz 1991-2015.

Nematode management, in which the variety choice is the key factor to prevent exponential population growth (NT-varieties), will become more and more important.

