

Royal meteorological Institute of Belgium

Selection of meteorological conditions to apply in an Ecotron infrastructure Introduction

<u>Vincent Leemans</u> (1), Lesley De Cruz (2), Benjamin Dumont (1), Rafiq Hamdi (2), Pierre Delaplace (1), Bernard Heinesh (1), Sarah Garré (1), François Verheggen (1), Nicolas Theodorakopoulos (1), and Bernard Longdoz (1)

(1) ULg, GxABT, EnvironmentIsLife, Gembloux, Belgium (vincent.leemans@ulg.ac.be)(2) Royal Meteorological Institute of Belgium

- Ecotrons are designed for studying the impact of climate change on (agro-)ecosystems behaviour and vice-versa
- Researchers using the Ecotron would like to study "climatic conditions", for instance around 2050
- Climatic conditions are statistics; to drive an Ecotron you need meteorological quantities
- This presentation is about algorithms to obtain these meteorological quantities that may represent actual or future climates

Institute of Belaium

Selection of meteorological conditions to apply in an Ecotron infrastructure

- Selection of the period and RCP scenario
- Definition for each climatic variate of
 - a percentile
 - a weight

Home

The Ecotron

Data gener.

Selection

Discussion

Details

Next

Previous

Selection Short

Selection of meteorological conditions to apply in an Ecotron infrastructure

AnaEF

Home

The Ecotron

Data gener.

Selection

Discussion

Discussion

- The method seems more efficient when few quantities are given an important weight
- This is partly due to correlation between quantities

drv-wet (mm

 This is probably linked to the sample size generated, 30 Details years

rdm temperature (' C'

The Ecotron 1

FC

Environment Is Life Gembloux Agro-Bio Tech Université de Liège

Institute of Belaium

Selection of meteorological conditions to apply in an Ecotron infrastructure

Ecotron presentation

- Crop area : ~2m²
- Chamber volume : 50 m³
- Soil volume : up to 3m³
- Either 1 lysimeters or 9 mesocosms

Home

The Ecotron

Data gener.

Royal meteorological Institute of Belgium

Selection of me apply in an

Ecotron p

- Physical description
 - Crop area : 2m²
 - Chamber volume : 50 m³
 - Soil volume : 3m³
- Several quantities are controlled, namely
 - air temperature, air humidity (1), irradiation (2), precipitations (3), wind turbulences, air renewal
 - [CO₂], [O₃]

EGU 2017 👝 🛈

- soil temperature and water potential
- Time step : 5 minutes
- Chambers are air-thight and protected against trespass of insects and micro-organisms

Institute of Belaium

Selection of meteorological conditions to apply in an Ecotron infrastructure

Ecotron presentation

- http://www.gembloux.ulg.ac.be/environmentislife/
- Manager :
 - vincent.leemans@ulg.ac.be
- Chair:
 - bernard.longdoz@ulg.ac.be —

AnaEE

Home

The Ecotron

Data gener.

Selection of meteorological conditions to apply in an Ecotron infrastructure

Meteorological quantities generation

- Based on Alaro0 •
 - ARPEGE
 - Aladin

Institute of Belaium

- Recent past; 2040-2070; 2070-2100
- RCP 4.5: RCP 8.5 —

Point close to Gembloux on a 4*4 km grid, one set of quantities every 3 hours Back The data generated : • Near surface air temperature — Near surface air humidity _ Previous Precipitations Cloud cover Next Wind speed

Home

The Ecotron

EGU 2017 😄 🛈

Institute of Belaium

Selection of meteorological conditions to apply in an Ecotron infrastructure

Meteorological quantities generation

- Conversion of the data types :
 - t°, relative humidity, precipitations are given in correct units
 - A parameter *sadpc* was computed to estimate dry/wet period —
 - Computation of the sum of precipication
 - Computation of the trend by fitting of a polynomial (degree 5) on the sum
 - Computation of the sum of absolute difference between the sum and the trend

Home

Previous

EGU 2017

Data gener. 4

Data gener. 5

Institute of Belaium

Selection of meteorological conditions to apply in an Ecotron infrastructure

AnaEE

Home

Data gener.

Selection

- Data debiasing
 - Adjustment of the mean value and of the standard deviation of the recent past model data on the observed recent past data (Ernage)

Institute of Belaium

Selection of meteorological conditions to apply in an Ecotron infrastructure

AnaEE

Home

Data gener.

Selection

- Data debiasing
 - Adjustment of the mean value and of the standard deviation of the recent past model data on the observed recent past data (Ernage)

Institute of Belaium

Selection of meteorological conditions to apply in an Ecotron infrastructure

AnaEE

Home

Data gener.

Selection

- Data debiasing
 - Adjustment of the mean value and of the standard deviation of the recent past model data on the observed recent past data (Ernage)

Quantity	1995 (observed)	1995 (model)	1995 (debiaised model)	ological conditions to	Analysis and Experimentation on Ecosystems
air temperature (°C)	9,7 <mark>3,4</mark> 5,3 0,8	8,1 <mark>3,3</mark> 6,7 0,7	9,8 <mark>3,4</mark> 5,8 0,7	ron infrastructure	Home
relative humidity (%)	84,0 12,1 4,5 6,3	85,4 12,1 7,0 1,4	84,8 12,1 8,0 1,6	tities generation	The Ecotron
cloud cover (%)	66,2 30,3 10,1 4,8	54,2 25,1 6,2 1,8	66,3 <mark>30,3</mark> 9,8 2,1	dice generation	Data gener.
Precipitation (mm/3h) (mm/day)	2,2 4,2 0,9 0,4	0,32 0,75 0,22 0,04 2,54 4,2 0,97 0,29	2,32 4,16 0.90 0.32		Selection
(mm/year)	821 1539 321 146	929 2198 644 105	846 1519 330 117	of the standard deviation le observed recent past data	Discussion
Detrended cumulative sum of Prec. (mm)	13,8 3,0	12,8 3,5	12,8 3,7		Back
The annual mean (m _y) The "daily" standard devia	ation, that is to say	the mean over t	Used to quantify each year,		
The standard deviation of The standard deviation of	the quantity durin the means of eac	g the year h year	9 variables	Previous	
					Next

Institute of Belaium

Selection of meteorological conditions to apply in an Ecotron infrastructure

Home

The Ecotron

Data gener.

Selection

Discussion

Back

Previous

Next

Meteorological year selection

- Scientist decisions :
- Selection of the time period
 - 1980-2010, 2040-2070, 2070-2100
 - Selection of the RCP scenario _
 - 4.5; 8.5
 - Definition of the crop period —
 - For example, from end of October up to end of July
 - For each climatic variate, for the mean and for the annual standard deviation, provide —
 - a percentile p
 - a weight w

For example, p=0.7means one is looking for a year above the normal (more hot, more wet, ...)

Institute of Belaium

Selection of meteorological conditions to apply in an Ecotron infrastructure

Meteorological year selection

- Algorithm :
 - Computation of the difference d between each quantity (x, could be either the mean or the standard deviation of the quantity) to the corresponding percentile divided by the interguartile range igr (so that different quantities can be compared
 - Computation of the weighted distance R based on d —

$$d_{i} = \frac{x_{i} - p_{i}}{iqr_{i}}$$

$$R = \mathbf{d}' \mathbf{W} \mathbf{d}$$
Next

Home

The Ecotron

Data gener.

Selection

Discussion

Back

Institute of Belaium

Selection of meteorological conditions to apply in an Ecotron infrastructure

Meteorological year selection

- Decision aid tools :
 - Presentation of the data so that the scientist could make a choice, for each variables :
 - Tables •

The Ecotron Data gener.

Home

Selection

Discussion

Back

Previous

Next

Pre-selecte Rank : Year : 1	ed year : 3, 13, 1983, 1993, 19	15, 4, 95, 1984, 1	14 994				Analysis and Experimentation on Ecosystems
Climate cas	se : HO						Homo
Chosen year	rs : 1983, 199	3, 1995, 19	84, 1994				HUITE
	temperature	hum. rel.	cloud cov.	Precipitations	Precipitations	Dry/wet periods	
	(°C)	(%)	(%)	(mm/d)	(mm/y)	mm	The Ecotron
For the cho	osen years :						
means							
Quantile	10.0	83.3	66.2	2.28	831	13.8	Data gener.
1983	9.8	82.1	65.9	2.25	823	13.1	
1993	9.9	82.5	67.8	2.43	887	13.1	Soloction
1995	10.5	83.2	67.2	2.10	765	12.4	Selection
1984	9.7	82.3	66.2	2.07	755	10.7	
1994	9.5	80.6	68.8	2.25	822	11.8	Discussion
dXy							
Quantile	2.7	8.5	23.9	2.85	1039		
1983	2.4	8.0	23.6	2.73	997		
1993	2.4	7.9	23.8	2.84	1036		Back
1995	2.5	8.4	22.9	2.61	954		Dack
1984	2.7	8.3	24.0	2.56	934		
1994	2.8	9.5	23.9	2.91	1063		
std							
1983	6.5	11.1	29.3	4.20	1532		Previous
1993	6.2	10.9	29.8	4.76	1738		
1995	5.9	13.1	29.6	4.08	1488		
1984	6.7	11.0	29.4	3.96	1444		Next
1994	6.1	14.0	29.8	4.60	1678		

Institute of Belgium

Selection of meteorological conditions to apply in an Ecotron infrastructure

Meteorological year selection

- Decision aid tools :
 - Presentation of the data so that the scientist could make a choice, for each variables :

AnaEE

Home

The Ecotron

Data gener.

Institute of Belgium

Selection of meteorological conditions to apply in an Ecotron infrastructure

Meteorological year selection

- Decision aid tools :
 - Presentation of the data so that the scientist could make a choice, for each variables :
 - Scatter diagrams ٠
 - Cumulative frequency distributions •

AnaEE

Home

The Ecotron

Data gener.

Institute of Belgium

Selection of meteorological conditions to apply in an Ecotron infrastructure

Meteorological year selection

- Decision aid tools :
 - Presentation of the data so that the scientist could make a choice, for each variables :
 - Scatter diagrams
 - Cumulative frequency distributions ۲
 - Time series

Home

The Ecotron

Data gener.

Selection

EGU 2017

Environment Is Life Gembloux Agro-Bio Tech Université de Liège

Selection of meteorological conditions to apply in an Ecotron infrastructure

Discussion

- The method seems more efficient when few quantities are given an important weight
 - Case 1 : only the temperature has a non null w (p=0.5)

Home

The Ecotron

Data gener.

Home

The Ecotron

Data gener.

Selection

Discussion

- The method seems more efficient when few quantities are given an important weight
 - Case 2 : Temperature (p=0.5, w=2) and precipitation (p=0.7, w=1)
 - Point spread around the chosen percentiles

Selection of meteorological conditions to apply in an Ecotron infrastructure

Discussion

- The method seems more efficient when few quantities are given an important weight
 - Case 3 : Temperature (p=0.5, w=2), precipitation (p=0.7, w=1) and dry/wet periods (p=0.7, w=2)
 - Only two year are reasonably close to the chosen point (yellow and green dots, next slide)

AnaEE

Home

The Ecotron

Data gener.

Selection

Selection of meteorological conditions to apply in an Ecotron infrastructure

Discussion

- The method seems more efficient when few quantities are given an important weight
- This is partly due to correlation between quantities
- This is probably linked to the sample size generated, 30 years

Thank you for your attention

http://www.gembloux.ulg.ac.be/environmentislife/

Discussion End

The Ecotron

Home

Data gener.

Selection

Discussion

Back

Next

Previous