

Arctic Warming, Moisture Increase and Circulation Changes Observed in the Ny-Ålesund Homogenized Radiosonde Record

M. Maturilli and M. Kayser

Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research

Introduction

Various processes contributing to Arctic amplification cause global warming to be effectively larger in the Arctic region. Here, we focus on observations at the AWIPEV research base in Ny-Ålesund (78.9°N, 11.9°E), Svalbard. The Ny-Ålesund surface observations reflect the recent warming in the North Atlantic Arctic, with the largest temperature increase occurring in the winter months.

Fig.1: Air temperature (2m) in Ny-Ålesund [update of *Maturilli et al., 2015*].

How does the climate change signal emerge in the vertical column?

Data

Radiosonde measurements obtained at the Arctic research base AWIPEV at Ny-Ålesund (78.9° N, 11.9° E), Svalbard, from 1993 to 2015 have been homogenized accounting for instrumentation discontinuities by correcting known errors in the manufacturer provided profiles.

The homogenized radiosonde data set is available at http://doi.pangaea.de/10.1594/PANGAEA.845373.

1993	2002 2006	2015
VAISALA POLOSOVIES ROSO		
RS80-A	RS90	RS92

Temperature

Humidity

Wind

Fig.7: Daily Arctic Oscillation (AO) indices for the winter months (DJF), divided into the early period 1993–2003 (blue) and the late period 2004–2014 (red) from ERA-interim. Left and right: schematic of the jet stream position and the more meridional (zonal) flow under negative (positive) AO conditions, respectively.

Conclusion

- changes in winter atmospheric circulation
- enhanced advection of warm and moist air from lower latitudes to the Svalbard region
- warming and moistening of the atmospheric column above Ny-Ålesund

Fig.6: Difference in relative occurrence frequency of wind directions in winter season (DJF), subtracting period [1993 to 2003] from period [2004 to 2014].

tropospheric flow in winter occurs less frequent from northerly directions and to the same amount more frequent from the South

Fig.2: Change of upper-air temperature from radiosondes 1993-2014, significance indicated by dashed line.

Fig.3: Integrated water vapour (IWV) from radiosonde measurements for the annual and the winter season mean (red and blue circles, respectively). The increase is given by the linear regression (lines) ± 1 standard deviation (colour shaded), respectively.

- no increase in the contribution by specific humidity inversions
- increase in the humidity content of the large scale background humidity profiles

Fig.4: Integrated specific humidity of the total profiles (black), the background humidity profiles (blue), and the inversion layers (red).

Fig.5: Specific humidity profile (black line), considering several humidity inversion layers (grey shading), and a background humidity profile (blue line).

Maturilli et al. (2015): Surface radiation climatology for NyÅlesund, Svalbard (78.9° N),basic observations for trend detection. Theor. Appl. Climatol., 120: 331-339. doi:10.1007/s00704-014-1173-4.

Maturilli and Kayser (2016): Arctic warming, moisture increase and circulation changes observed in the Ny-Ålesund homogenized radiosonde record. Theor. Appl. Climatol., doi:10.1007/s00704-016-1864-0

