
A plethora of conceptual models is available: What are the dynamic differences?   

We investigate how climate forcing influences the streamflow simulation potential of different lumped conceptual models 
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We find 18 representative climate classes... …and use daily data from each as model forcing Forcing strongly controls model potential 
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Selected locations are centroids from k-means clustering analysis of climate indices. 

Indices describe aridity (Im), aridity seasonality (ImR) and fraction P as snow (fps). 

Climate is an important control on the water balance and 

on water movement/partitioning - or lack thereof 

Rain, temperature and potential evapotranspiration interact to control (1) aridity, (2) 

snowfall, (3) rainfall intensity. (1) and (2) are largely non-correlated on a global scale 

and are used to cluster the global climates in representative groups. 

Annual average aridity, 

aridity seasonality & 

fraction P as snow con-

trol the clustering re-

sults (borders as figure 

at the top, colours are 

those of centroids).  

 

Differences with the 

Köppen-Geiger classes
[1] occur mainly in areas 

with strong seasonality. 

What are your 

thoughts on these 

differences? 

K-means clustering based on aridity and snowfall 

Köppen-Geiger classification based primarily on temperature 
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The models have different structures and represent a selection of 

processes (snow, soil moisture, deep store, runoff store, routing). We 

investigate if, given the same forcing, the models behave differently. 
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PENMAN[3] 

ρ    [0, 1] 

Smax  [1, 2000] 

Def   [0, 250] 

g    [0, 1] 

a    [0, 1] 

GR4J[2] 

x1   [1, 2000]   

x2  [-8, 14]   

x3  [1, 300]     

x4  [0, 5]    

FLEX_IS[4,5] 

TT    [-3, 3]  

CFMAX  [0.5, 20] 

IMAX   [0, 5] 

SMAX   [1, 2000] 

β     [0, 7] 

LP    [0, 1] 

PERC   [0, 100] 

D     [0, 1] 

Kf    [0, 1] 

Ks    [0, 1] 

Nlagf   [0, 5] 

Nlags   [0, 100] 

Climate clustering data (P, T, N, E):  

CRU TS v3.23 - Harris, I., et al. (2014). http://doi.org/10.1002/joc.3711 
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Model forcing data (P): MSWEP - Beck, H. E., et al. (2017). http://doi.org/10.5194/hess-21-589-2017 

Model forcing data (T): BEST - Berkely Earth. (2017). http://www.berkeleyearth.org 

Model forcing data (E): USGS - USGS. (2017). https://earlywarning.usgs.gov/fews/product/81 

GR4J sampling (25000 parameter sets x 18 climates = 450000 samples) summarized 

as signature values. Black circles are observations from 410 MOPEX catchments.  

Limitations: number of parameter samples and models is too low. Both will be ad-

dressed in future work, allowing hypotheses about what makes models different. 

Top: climate forcing determines model potential - which re-

gions of the output space a model can reach. Arid climates 

limit simulation potential more than wet ones (red regions 

tend to be smaller than green ones).  

Bottom: PENMAN’s deficit store enhances this effect. 

FLEX-IS shows that more parameters don’t necessarily in-

crease model simulation potential. 

These 3 models are chosen from a much longer 

list of models for brevity and their obvious 

differences in structure.  GR4J and PENMAN 

have a limited number of parameters but con-

tain some unique elements (e.g. water ex-

change, deficit store), while FLEX-IS is a more 

traditional RR-model with a larger number of 

parameters. 

 

We use Latin-Hypercube sampling to generate 

minimum 5000 parameter sets for each model.  

PENMAN (top) and FLEX-IS (bottom) sampling (5000 parameter sets x 18 climates). 


