Modification of ENSO and ENSO-related Atmospheric Characteristics due to Future Climate Change
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Introduction ENSO response to global warming (comparison of piControl and RCP 8.5 experiments) The sensitivity to intensity of radiation forcing
(experiments RCP 8.5 and RCP 2.6)
Under climate warming the characteristics of two ENSO types may change significantly, including amplitude, fre- » SST (difference between RCP 8.5 and piControl experiment)
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Power et al., 2013). Along the equator the trades weaken, as required by the reduction in zonal SST gradient and associ- B R D 003 0o
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vection feedback) and increases the ENSO amplitude (DiNezio et a, 2012). Therefore several atmospheric and oceanic Most models demonstrates decreasing of SST anomalies associated to EP and CP El Nifio in warmer climate, while the localization of T T T e eIt | SOE i 16T Ta0 T W I W ST e e SPETe0E 150 1o TSOWIaW SIS
feedbacks related to ENSO are amplified and some are weakened after global warming, which explains the diverse SST extremes does not change. EP El Nifo weakens stronger as compare to CP event . However MROC5 documents intensification
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ty still exists on how the relative frequency of the two types of El Nifio might change in the future climate. + Vertical velocity (difference between RCP 8.5 and piControl experiment wind at 850 hPa (g,h) between RCP 8.5 and RCP 2.6 experiments for EP and CP El Nino. Period (2071-2100)
In current investigation the wider range of ENSO characteristics is considered as compare to previous studies, including ' The modification of ENSO characteristics under global warming demonstrates significant sensitivity to the warming
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climate in accordance with previous investigations. MIROCS5 simulates the stronger decreasing of trade winds in warmer climate as compare to PiControl experiment for both types of ENSO.



