
KIT – The Research University in the Helmholtz Association

D. Heinzeller et al.: MPAS: an extreme scaling experiment 95

Figure 13. Required times for individual steps of the 3 km test runs on Juqueen (18 s time step).

the run on 24 racks and a parallel efficiency of nearly 70%,
which confirms the above-mentioned limit of approximately
150 owned cells per task, below which the parallelisation be-
comes inefficient.
All scaling tests are conducted with an 18 s model inte-

gration time step for a 1 h model time. However, we find
that in order to keep the model stable when starting off the
3 km mesh from initial conditions derived from a 48 km re-
analysis data set (CFSR), a more conservative time step is re-
quired. MPAS currently lacks a dynamical initialisation sys-
tem (e.g. digital filters, adaptive time-stepping), which could
avoid this issue. Model instabilities leading to NaNs can af-
fect the performance in different ways: (1) the performance
might increase in cases where if-NaN-tests causes the code
to return early from computationally intensive physics rou-
tines, or (2) the performance might decrease due to the con-
tinuous generation of floating-point exceptions. We note that
on Blue Gene systems, MPAS does not by default include
the -qflttrap compiler flag to trap floating-point excep-
tions, and, consequently, the model will continue to run even
when the simulation generates NaNs. We therefore repeat the
runs for 4096, 8192 and 16 384 nodes with a 12 s time step
to obtain a stable model run. The measured real times for the
three 12 s runs are very close to 1.5 times the real times for
the corresponding 18 s runs, which gives us confidence that
we can scale the results for 24 576 and 28 672 nodes with an
18 s time step to a 12 s time step, despite the fact that the runs
with an 18 s time step produced NaNs.
Table 3 and Fig. 13 summarise the required times of the

individual steps of the 3 km runs with an 18 s integration

time step. Due to wall-time constraints, we only conduct runs
without writing output to the disk. The last column in Ta-
ble 3 estimates how many hours the 3 km model can be ad-
vanced within 24 h wall time, and is calculated as follows:
a 12 s model integration time step is assumed, and the real
time required is scaled from the 18 s runs by a factor of
1.5 for 24 576 and 28 672 nodes, for which no 12 s runs are
conducted. For a typical production run, diagnostic output
files of 13GB size are written every 3 h model time, while
comprehensive output files of approximately 250GB size are
written every 24 h model time. A restart file of 2.1 TB size is
written at the end of the model run. Based on a parallel write
performance of 0.6GBs�1, we make a conservative estimate
that roughly 2 hours of the 24 h wall time will be used up by
writing these files to the disk. Tables H1 and H2 list the file
sizes and the cheapest and fastest model runs for the 3 km
mesh on Juqueen.
We conclude from this extreme scaling test that the dy-

namical solver of MPAS scales on massively parallel sys-
tems out to hundreds of thousands of cores. Our results con-
firm that the model behaves similar for the 3 km mesh than
for the significantly smaller problem sizes and that the par-
allel efficiency is limited by the same factors, namely the in-
creasing number of halo cells and the amount of communi-
cation for a large number of tasks. This occurs around 150
owned cells per task, which corresponds to roughly 27 300
nodes for the 3 km mesh. However, we find that the model
initialisation and the disk I/O become increasingly impor-
tant and at the same time difficult to improve for extremely
large test cases. Compared to the model integration, the time

www.geosci-model-dev.net/9/77/2016/ Geosci. Model Dev., 9, 77–110, 2016

Parallel efficiency of dynamical solver only

100%

91% 90% 88% 70%

Aerosol-aware, convection-resolving climate modelling
Regional and global modelling approaches with WRF and MPAS

WRF Characteristics

•  Lat-Lon global grid
− Anisotropic grid cells
− Polar filtering required

•  Grid refinement through
domain nesting
− Flow distortions at nest

boundaries

MPAS Characteristics

•  Unstructured Voronoi
(hexagonal) grid
− Good scaling on massively

parallel computers

•  Smooth grid refinement
 on a conformal mesh

−  Increased accuracy and
flexibility in varying resolution

Significant differences between
WRF and MPAS

MPAS has been developed for global applications on uniform and
variable-meshes.

There is no plan to replace WRF/ARW with MPAS – they are
complementary models!

WRF Characteristics

•  Lat-Lon global grid
− Anisotropic grid cells
− Polar filtering required

•  Grid refinement through
domain nesting
− Flow distortions at nest

boundaries

MPAS Characteristics

•  Unstructured Voronoi
(hexagonal) grid
− Good scaling on massively

parallel computers

•  Smooth grid refinement
 on a conformal mesh

−  Increased accuracy and
flexibility in varying resolution

Significant differences between
WRF and MPAS

MPAS has been developed for global applications on uniform and
variable-meshes.

There is no plan to replace WRF/ARW with MPAS – they are
complementary models!

WRF Characteristics

•  Lat-Lon global grid
− Anisotropic grid cells
− Polar filtering required

•  Grid refinement through
domain nesting
− Flow distortions at nest

boundaries

MPAS Characteristics

•  Unstructured Voronoi
(hexagonal) grid
− Good scaling on massively

parallel computers

•  Smooth grid refinement
 on a conformal mesh

−  Increased accuracy and
flexibility in varying resolution

Significant differences between
WRF and MPAS

MPAS has been developed for global applications on uniform and
variable-meshes.

There is no plan to replace WRF/ARW with MPAS – they are
complementary models!

WRF Characteristics

•  Lat-Lon global grid
− Anisotropic grid cells
− Polar filtering required

•  Grid refinement through
domain nesting
− Flow distortions at nest

boundaries

MPAS Characteristics

•  Unstructured Voronoi
(hexagonal) grid
− Good scaling on massively

parallel computers

•  Smooth grid refinement
 on a conformal mesh

−  Increased accuracy and
flexibility in varying resolution

Significant differences between
WRF and MPAS

MPAS has been developed for global applications on uniform and
variable-meshes.

There is no plan to replace WRF/ARW with MPAS – they are
complementary models!

Contact
Dom Heinzeller
KIT, IMK-IFU
heinzeller@kit.edu

Preparing for Exascale: Convection-permitting, global atmospheric simulations
D. Heinzeller, M.G. Duda, H. Kunstmann, 2016: Geosci. Model Dev., 9, 77-110, http://www.geosci-model-dev.net/9/77/2016

Step 1. Addressing the file I/O performance
• SIONlib I/O layer (http://www.fz-juelich.de/jsc/sionlib) for

massively parallel I/O in addition to existing I/O formats
• Post-processor core for converting to netCDF, regridding

to lat-lon grids and interpolation to station locations
• Reading/writing in SIONlib format requires to use the

same number of MPI tasks and the same graph partition
• Information encoded in SIONlib data can be used to

skip parts of the bootstrapping at model startup
The SIONlib I/O layer addresses file I/O and model setup costs.

Step 2. Reducing MPI communication overhead
• Hybrid MPI+OpenMP parallelisation to speed

up bootstrapping and decrease halo exchange
time in dynamical solver of MPAS-A

• Optimisation for latest many-core architectures
• Combine with SIONlib I/O layer improvements

for maximum performance at extreme scale
• Threading of one additional routine in solver
• Avoid repeated creation and destruction of threads

Block of cells owned
by a process and two
layers of halo cells

Nodes x MPI x OMP Solver/h [s] Init [s] I/O [s]
4096 x 16 x 1 350 830 33

4096 x 8 x 2 323 258 39

4096 x 2 x 8 407 222 21

4096 x 1 x 16 689 162 5
1hr model integration of 3km mesh on LRZ SuperMUC

Convection-permitting global model applications are
the next grand challenge in NWP and on the horizon
of next-generation, massively parallel HPC systems.
Extreme scaling experiment with MPAS on
FZJ JUQUEEN (IBM Bluegene /Q) in 2015:
• Uniform 3km mesh, 65,536,002 cells
• 41 vertical levels, double precision
• 1hr model integration, no file output
• Initial conditions: 1.1TB pnetCDF CDF5
• Min. 4096 nodes, 65TB memory; max: 28,672 nodes
• Fastest run: 6.3 x real-time, 1.6 Mio CPUh/24h
The dynamical solver of MPAS-Atmosphere scales up to
400,000 MPI tasks (160 owned cells per task). Show-stoppers
at extreme scale are file I/O and model setup (bootstrapping).

Timer name pnetCDF, CDF5 SIONlib
1 total time 3585 2117
2 initialise 1176 244
3 bootstrapping 540 168
3 stream input 612 52
2 time integration 1580 1658
2 stream output 818 204

Timing results for a uniform 2km mesh with
147,456,002 cells on LRZ SuperMUC on
2048 nodes x 16 MPI tasks x 1 OpenMP
task (131TB memory). Integration for 10min
model time using a conservative 5s time step.

Station interpolation
output (2m temp in ºC)

total 6.3T
drwxr-xr-x 2 di73bim2 pr94mi 4.0K Apr 10 11:28 .
drwxrwxr-x 3 di73bim2 pr94mi 4.0K Apr 10 11:28 ..
-rw-r--r-- 1 di73bim2 pr94mi 120G Apr 10 11:28 diag.2013-10-27_12.00.00.nc
-rw-r--r-- 1 di73bim2 pr94mi 120G Apr 10 11:28 diag.2013-10-27_12.05.00.nc
-rw-r--r-- 1 di73bim2 pr94mi 120G Apr 10 11:28 diag.2013-10-27_12.10.00.nc
-rw-r--r-- 1 di73bim2 pr94mi 3.0T Apr 10 11:28 history.2013-10-27_12.00.00.nc
-rw-r--r-- 1 di73bim2 pr94mi 3.0T Apr 10 11:28 history.2013-10-27_12.10.00.nc
-rw-r--r-- 1 di73bim2 pr94mi 4.4M Apr 10 11:28 log.00000.err
-rw-r--r-- 1 di73bim2 pr94mi 4.8K Apr 10 11:28 log.00000.out
-rw-r--r-- 1 di73bim2 pr94mi 993K Apr 10 11:28 mpas_2km_run_noaltomp.e1485223
-rw-r--r-- 1 di73bim2 pr94mi 289 Apr 10 11:28 mpas_2km_run_noaltomp.o1485223
di73bim2@login04:/gss/scratch/pr94mi/di73bim2/TEST/mpas_2km/mpas_run/run_ecmwfpres/coldstart/noaltomp/cdf5/2048x16x1>

Original code
! call non-threaded function
...
!$OMP parallel do
do thread=1,nThreads

! call threaded function
end do
!$OMP end parallel do
...
!$OMP parallel do
do thread=1,nThreads

! call threaded function
end do
!$OMP end parallel do

Optimised code
!$OMP parallel
...
!$OMP do schedule(static,1)
do thread=1,nThreads

! call threaded function
end do
!$OMP end do
...
!$OMP master
! call non-threaded function
!$OMP end master
...
!$OMP end parallel

Original vs. optimised
hybrid code on Intel
Xeon Phi KNL for a
uniform 240km mesh
(10242 cells).

Note: Using optimised
compiler flags for the
Intel KNL, performance
gains are smaller (≈20%).

Putting it to the test: extreme scaling experiment on FZJ JUQUEEN in 2017
• Jablonowski & Williamson (2006) baroclinic wave
• 2km mesh, 147,456,002 cells, single precision
• 26 vertical levels, 10min model integration, Δt=5s
• File input 1.8TB, output 4TB (SIONlib)
• Dynamics and file I/O only, no physics: more

stringent test of dynamical solver
• MPI only: threading model not

supported on JUQUEEN
0.5

1

1.5

2

2.5

3

3.5

4

4.5

100000 200000 300000 400000 500000

Sp
ee
du
p

Cores	=	MPI	tasks

Scaling	of	MPAS-A	 2km	- idealised	JW	test	case

real	 scaling ideal	 scaling

7 racks 14 racks 21 racks 28 racksTime integration speedup
(dynamics and file I/O)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

100000 200000 300000 400000 500000

Sp
ee
du
p

Cores	=	MPI	tasks

Scaling	of	MPAS-A	 2km	- idealised	JW	test	case

real	 scaling ideal	 scaling

7 racks 14 racks 21 racks 28 racks

Conclusions
• Convection-permitting global simulations are within reach

of current and next-generation HPC systems
• Efficient parallel I/O, code preparation for novel many-core

architectures and HPC-specific adaptation are key to success

