Wave dynamics and hydrodynamics in Potter Cove, King George Island, Antarctica

Lim, Chai Heng Institute of Ocean and Earth Sciences University of Malaya Kuala Lumpur, Malaysia

heng@um.edu.my chaiheng753@yahoo.com

Chai Heng Lim^{1,2}, Karsten Lettmann³, Jörg-Olaf Wolff³, Azizan Abu Samah^{1,2}

- 1. Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia.
- 2. National Antarctic Research Centre, University of Malaya, Kuala Lumpur, Malaysia.
- 3. Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Germany

Where is Potter Cove?

Potter Cove

Background

1. Recent study (Wölfl et al., 2014): occurrence of different seafloor habitats.

- 2. To understand
 - the wave dynamics in the study area.
 - the flow circulation patterns under various forcings.
- 3. Which physical mechanisms (waves/currents) that potentially influence the bottom sediment movement and habitat distributions in Potter Cove?
- 4. To study water transport and exchange characteristics of the cove.

SWANsimulating waves

Spectral action balance equation:

$$\frac{\partial N}{\partial t} + \frac{\partial c_{\lambda} N}{\partial \lambda} + \frac{\partial c_{\varphi} N}{\partial \varphi} + \frac{\partial c_{\sigma} N}{\partial \sigma} + \frac{\partial c_{\theta} N}{\partial \theta} = \frac{S_{tot}}{\sigma}$$

1st term: local change of the energy density in time. Action density, $N = E/\sigma$. 2nd and 3rd terms: propagation of wave energy in lon and lat. 4th term: shifting of the relative frequency due to variations in depths. 5th term: depth-induced refraction.

6th term: total sources and sinks of energy:

SWAN one-way nesting

SWAN ...simulating waves

SWAN

H_s Buoys 6-9

CC Û BY

Goodness-of-fit

Willmott's *D* index of goodness-of-fit:

$$D = 1 - \frac{\sum_{n=1}^{N} (P_n - O_n)^2}{\sum_{n=1}^{N} (|P_n - O| + |O_n - O|)^2}$$

D = 0 complete disagreement D = 1 perfect agreement

Bias index:

$$bias(P) = \frac{\sum_{n=1}^{N} (P_n - O_n)}{\sum_{n=1}^{N} O_n}$$

bias (P) = 0 perfect agreement bias (P) = -0.01 under predicting the observed data by 1% on average

Station	1	2	3	4	5	6	7	8	9
D index	0.95	0.95	0.96	0.90	0.97	0.94	0.85	0.89	0.76
<i>bias</i> index	-0.01	0.02	0.03	-0.12	-0.04	-0.07	-0.02	-0.03	0.07

Goodness-of-fit

Significant Wave Height

Rough sea state (ii) -62.22 -62.22 -61 2.5 -62.26 Latitude -62 -62.24 U₁₀ = 11.9 m/s -63 -62.3 2.2 -62.26 -64 -65 -62.34 -58.79 -58.7 -62 -58 -54 -58.94 -58.64 -58.74 -58.66 -66 l onaitude l onaitude Lonaitude Hs [m] 0 2 6 8 4

Points to extract wave spectra

To identify whether the wave states are swell-generated or locally wind-generated

KGI: King George Island

OS: Open sea BS: Bransfield Strait MM: Maxwell mouth PM: Potter mouth IC: inner cove

Wave Spectra

Rough sea state (i)

OS: Open sea BS: Bransfield Strait MM: Maxwell mouth PM: Potter mouth IC: inner cove

Example: Rough sea state (ii)

Bed shear stress is specified to a maximum of 0.13 N/m^2 (equal to τ_{cr}) to delineate the bed erosion prone regions.

Hydrodynamic Modelling

FVCOM model:

• An unstructured-grid finite volume coastal ocean model.

(Chen et al., 2006) - an 'open' community model.

• FVCOM computes the governing equations of momentum and continuity:

$$\begin{aligned} \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} - fv &= -\frac{1}{\rho_o} \frac{\partial P}{\partial x} + \frac{\partial}{\partial z} (K_m \frac{\partial u}{\partial z}) + F_u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} + fu &= -\frac{1}{\rho_o} \frac{\partial P}{\partial y} + \frac{\partial}{\partial z} (K_m \frac{\partial v}{\partial z}) + F_v \\ \frac{\partial P}{\partial z} &= -\rho g \\ \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} &= 0 \end{aligned}$$

$$\begin{aligned} f: \text{ Coriolis parameter} \\ Km: \text{ vertical eddy viscosity coefficient} \\ (Fu, Fv): \text{ horizontal momentum diffusivity terms} \end{aligned}$$

FVCOM model:

- Horizontal grid: unstructured triangular mesh.
- Vertical grid: uniform σ -coordinate (vertical layers in the water column).

Mesh

- ♦ 152 805 elements
- ♦ 78 702 nodes

Horizontal resolution

- Min element size: 100 m
- Max element size: 4 km
- Shelf break, ~1.5-2 km

Vertical resolution

- 41 σ levels (uniform layers)
 ~ 0.16 m to 18.84 m (Potter Cove)
- ✤ 3D simulation
- time step = 10 s
- Boundary conditions:
- (1) Tidal forcing: Global FES2004 predicted tides(2) Wind: wind at 10 m, 6-hourly, NOAA-NCEP

Maxwell Bay: The Bathymetry and Mesh

Potter Cove: The Bathymetry and Mesh

Observed sea level data:

1. Dallmann

UHSLC research quality database

2. Capitan Prat Base

BODC database

3. Esperanza

UHSLC - GLOSS/CLIVAR database

Stations	D index	bias index (%)		
1. Capitan Prat Base	0.990	0.82		
2. Dallmann	0.989	0.53		
3. Esperanza	0.986	0.02		

Tidal elevation: modelled vs observed

Tidal circulation during neap tide (ebb condition)

Tidal flow fields follow the seafloor topography

Bed shear stress is specified to a max. of 0.13 N/m^2 (equal to τ_{cr}) to delineate the bed erosion prone regions.

Distribution of habitat type

Image: Wölfl et al., 2014

Images: Anne-Cathrin Wölfl

Local residence time (LRT)

Initial tracer concentration $C_0 = 100 \text{ g/L}$

Residence time

The time it takes for a water parcel starting at a specific location within Potter Cove to leave its outlet or boundaries.

Flushing time

Flushing time =
$$\int_0^\infty r(t) dt$$

Forcing scenario	Flushing time (day)			
Tide	8.5			
Tide + realistic wind	3.2			
Tide + NW10 wind	4.0			
Tide + W10 wind	1.0			

Flushing time

The time required for a well-mixed volume of the entire cove to be replaced with external water.

Conclusions

- 1. Wave condition in Potter Cove is dependent on the local wind condition.
- 2. Tides have minimal influence on the circulation in Potter Cove.
- 3. Current regime in Potter Cove is rather wind-dominated.
- 4. Wave-induced bed shear stress is a potential major driving force for the bed sediment erosion.
- 5. The flushing time is approximately 3.2 days.

Image removed due to copyright considerations.

Chai Heng Lim University of Malaya, Malaysia heng@um.edu.my chaiheng753@yahoo.com

thank you

terima kasih

Image removed due to copyright considerations.

Image removed due to copyright considerations.

