

Assessment of Power Potential of Tidal Currents and Impacts of Power Extraction on Flow Conditions in Indonesia

Kadir Orhan, FTZ, University of Kiel Roberto Mayerle, FTZ, University of Kiel

ERE3.2/OS4.8 Marine renewable energy; resource characterisation, interactions and impacts

1. Introduction

2. Objectives

3. Methodology

4. Conclusions and Outlook

PARIS2015 CONFÉRENCE DES NATIONS UNIES SUR LES CHANGEMENTS CLIMATIQUES

COP21.CMP11

«Climate change represents an urgent and potentially irreversible threat to human societies and the planet and thus requires the widest possible cooperation by all countries, and their participation in an effective and appropriate international response, with a view to accelerating the **reduction of global greenhouse gas emissions**.»

Universal Access to Sustainable Energy

1. Introduction

120GW

TOTAL ESTIMATED TIDAL STREAM CAPACITY GLOBALLY

BY

2. Objectives

Archimedes screw

Venturi effect device

Horizontal axis turbine

Vertical axis turbine

Straits in Indonesia being investigated

3.1. Modeling of Currents

СС О

CC II

Comparison between modeled water level elevations and tidal gauge measurement for the Strait of Larantuka

Pearson correlation coefficient (r)	0.98
Root-mean-square error (RMSE)	0.11

Current Velocity Magnitudes

BY

$$P_{electric} = A_{turbine} \cdot \frac{1}{2} \cdot \rho \cdot U_{hub}^{3} \cdot \eta_{turbine} \cdot \eta_{ptake-off}$$

- Horizontal axis tidal turbines, which can harness a strongly bi-directional flow with rotor diameters ranging between <u>1.5m</u> and <u>20m</u> are considered
 The near free surface upper <u>5m</u> is eliminated
 - The turbines are located <u>above the low-speed benthic boundary layer</u>
 - Minimum depth is defined as 7.5m
 - The minimum for the power density is selected as 0.5 kW/m²
 - The minimum for the surface area is selected as 0.5km²

Kinetic Power Density: Strait of Larantuka

3.3. Assessment of Power Potentials

Spatial variation of applicable tidal stream turbine rotor diameters (A) and average exploitable power density with the tidal stream turbines (B)

Summary of the resource mapping of investigated domains

		Cut-in speed = 1.0 (m/s)		Cut-in speed = 0.5 (m/s)		
Strait	Max. kinetic power density (kW/m²)	Max. extractable power by one turbine (kW)	Suitable area (km²)	Total extractable power (MW)	Suitable area (km²)	Total extractable power (MW)
Bali	14.75	1,459	23	462	104	1,045
Larantuka	10.20	1,250	3	199	6	299
Boling	3.49	430	36	593	106	736
Alas	3.07	396	104	1,261	403	2,258
Lombok	2.36	236	53	754	114	865
Sunda	1.56	165	11	107	145	335
Badung	1.52	161	28	238	162	551
			SUM	3,614	SUM	6,089

3.4. Impact on flow conditions

CC II

40% dissipation:

60% dissipation:

Current velocities at the observation station considering 20%, 40% and 60% dissipation of the pre-existing kinetic power and the reference state

21

Α

Mean current velocity magnitudes along the transect A-B considering 20%, 40% and 60% dissipation of the pre-existing kinetic power and the reference state

Β

A *"decision support system"* for the assessment of tidal stream resources has been successfully developed

Main difficulties: lack of accurate data for bathymetry and current velocities at the straits

Total tidal stream power production is likely to exceed 5,000 MW

Impacts of power extraction have been captured reasonably well with low computational cost

Future research: coupling of *FLOW* and *CFD* models

Thank you for your attention!

Contact: korhan@corelab.uni-kiel.de