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1. Background and Objectives 3. Results 3.2 Flood hazard proxy

Coas..tal zones worIdvIn.de are s.ubject to short term, local varlatlorIs in sea level, 3.1 Maximum water |eve| Ta deepest Cha N ne| Figure 4 & 5 show charIges in flood hazarcI up-estuary a’.c ea.ch.tlde gauge location up-
particularly communities and infrastructure developed on estuaries (Quinn et al., 2014). estuary, compared to tide only, as a function of change in timing of the surge peak.
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This project uses Delft3D-FLOW in a sensitivity study to investigate the influence of | | S * Fig. 4 suggests locations in lower estuary experience greatest % change in maximum
* the timing of the peak of the storm surge relative to tidal high water Figure 3: Maximum modelled water IeveIs ann.g.the deepest channel of t.he Severn Estuary for 4 historic, water, noticeably when the peak of the surge and tidal high water coincide (0).
+ asymmetry of the storm surge component with time extreme water level events. Each event is classified based on event severity and storm surge skewness. + Locations up-estuary show greatest % change in maximum water when surge occurs
 and locally generated tide-surge interaction (Horsburgh and Wilson, 2007) : : 3 hours after high water (+3), indicating sensitivity to timing of the peak of the surge.
on extreme water level in the Severn Estuary. The results provide quantitative guidance ) I\/Iaxwpum modelled water levels are stacked as a function of the o * Greatest positive change in non-linear interaction when surge occurs significantly
on how to improve resilience of coastal energy infrastructure to extreme water levels. severity of the extreme water level event. Gloucester before or after tidal high water. Limited interaction around high water.
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Delft3D-FLOW, a 2D-horizontal hydrodynamic model (Lesser et al. 2004), is used to A storm-surge. with a negative skewI\ess ha§ extended influence S . N Il E - ®
simulate barotropic tide-surge-river propagation and interaction to access spatial variability b.efo.re t'da_I high water, and co.nstralns maximum water levels. E o2 gl p—, + E ’
in extreme water levels for historical events of varying severity in the Severn Estuary. * Tipping point between funnelling and friction effect near Portbury. a8 = 3 * e
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skewness, a measure of A
asymmetry, a novel approach. Portbury Figure 5: 5 May 2015 (95t percentile, -0.45 skewness). Percent change in i) maximum water
* Positive skewness indicates a level; ii) maximum non-linear interactions ((total water level) — (tide + filtered surge))

longer falling limb. Sea
* Negative skewness indicates a
longer rising limb.

* Fig. 5 suggests greater spatial variability in % change maximum water level between
locations, with a smaller extent of change than the 99t percentile event.

aé’:"-. 0 10 20 30 Km - * Linear trend; greatest positive change in non-linear interaction when surge occurs
A low pass filter is applied to ":"4' Bl e Bathymetry (m) significantly before high water. Limited interaction around high water.
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shifted configurations.

 This methodology could be applied to other hypertidal estuaries worldwide.
Next Delft3D will be coupled with WAM to investigate defence breaching & overtopping.
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