MOMENTUM, SENSIBLE HEAT AND CO, CORRELATION COEFFICIENTS: WHAT CAN WE LEARN FROM 20 YEARS OF EDDY COVARIANCE MEASUREMENTS? Quentin Hurdebise⁽¹⁾, Anne De Ligne⁽¹⁾, Caroline Vincke⁽²⁾, Bernard Heinesch⁽¹⁾ and Marc Aubinet⁽¹⁾ (1) Université de Liège – Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Biosystems Dynamics & Exchanges, Belgium (2) Université catholique de Louvain, Earth and Life Institute, Forest Sciences, Belgium CC (I) Quentin Hurdebise Université de Liège ## Context - ICOS candidate site located inside a mixed temperate forest - How does long term variability of measurement height and canopy height affect turbulent fluxes? ### Content - Spatio-temporal evolution of canopy aerodynamic distance (z-d) - Spatio-temporal evolution of correlation coefficients (r_{uw} , r_{wT} , r_{wc}). - Relation between these parameters. ### Theory - z d = sonic anemometer height (z) displacement height (d) - Correlation coefficients: $$r_{uw} = \frac{\overline{u'w'}}{\sigma_u \sigma_w}$$; $r_{wT} = \frac{\overline{w'T'}}{\sigma_w \sigma_T}$; $r_{wc} = \frac{\overline{w'c'}}{\sigma_w \sigma_c}$ - may be referred to as normalized covariances or transport efficiencies as they indicate how much w is related to u, T and c. - directly related to the similarity ratios and should therefore be constant in the inertial sublayer according to the similarity theory. # The Vielsalm Terrestrial Observatory The mixed forest view from the top of the tower in the West direction in autumn 2014 # Canopy distance (z-d) - **1997–2002:** *z-d* decrease due to vegetation growth. - **2002–2004:** *z-d* increase due to thinning. - **2004–2008:** unexplained *z-d* increase: measurements too close to the canopy? - **2009:** 14 (±6) m increase (+12 meter in reality). - \rightarrow z-d spatial and temporal dynamics is fairly well reproduced. However *z-d* is slightly overestimated. # Correlation coefficients and z-d - r_{uw} (neutral conditions): pronounced temporal dynamics (NE especially). r_{wc} and r_{wT} (unstable conditions): no temporal dynamics. - r_{uw} , r_{wc} and r_{wT} : pronounced spatial dynamics. - Significant relation between z-d and r_{ij} confirming measurements were made in the roughness sublayer. - No relation between z-d and r_{wc} or r_{wT} likely due to a more homogeneous distribution of sources. # Spatial variability in r_{uw} , r_{wc} and r_{wT} ? - The spatial variability does not depend on stability as it is observed for all stabilities. It is less pronounced for r_{wc} than for r_{wT} . - For r_{ij} , it is (at least partly) explained by canopy aerodynamic distance, while it is not the case for r_{wc} and r_{wT} . - For r_{wc} and r_{wt} , it could be partly explained by a mechanical effect as they are related to the similarity ratio σ_{w}/u_{*} . This effect could be due to the roll present at the limit between tall Douglas firs and beeches. $$r_{uw} = \left(\frac{\sigma_u}{u_*} \frac{\sigma_w}{u_*}\right)^{-1}$$; $r_{wT} = \left(\frac{\sigma_T}{T_*} \frac{\sigma_w}{u_*}\right)^{-1}$; $r_{wc} = \left(\frac{\sigma_c}{c_*} \frac{\sigma_w}{u_*}\right)^{-1}$ However it is not sufficient as the effect is less pronounced for r_{wT} than for r_{wc} . None of the classical explanations (differences in sources and sinks distribution, active role of the temperature, large turbulence structures, occurrence of cloud passages) was completely satisfactory. ### Conclusion - An original method has been developed in order to estimate canopy aerodynamic distance (z-d). - \rightarrow The method correctly detects the z-d variability observed at a long term eddy covariance site. - Momentum transport efficiency (r_{ijw}) is strongly linked to *z-d*. - → Characteristic of the roughness sublayer. - Heat and CO_2 correlation coefficients (r_{uw} , r_{wc} , r_{wT}) independent of z-d. - The differences between azimuthal direction sectors in r_{wc} , and r_{wT} can not be explained by z-d. - How to explain the spatial variability observed in r_{wc} , and r_{wT} (and at a lesser extent r_{uw})? - → Hypothesis were raised but no completely satisfactory explanation was found. - The canopy aerodynamic distance variability impact on the fluxes themselves remains to be explored as the footprint composition changed.