Error modeling validation of GRACE gravity data

S. Behzadpour1,2, T. Mayer-Gürr1, M. Weigelt2, J. Flury2, and S. Goswami2
1Institute of Geodesy, Graz University of Technology
2Institute of Geodesy, Leibniz University of Hannover

Introduction

The efforts to understand the error content of the GRACE (Gravity Recovery and Climate Experiment) observations continue for further improvement of gravity field models and preparation of GRACE-Follow On data processing setup.

• To identify un-modelling errors, a carefully inspection of the range rate post-fit residuals from the ITSG-Grace2016 gravity model [1], is performed in the spatial, temporal and frequency domain. This investigation indicates systematic errors due to eclipse crossings in frequency range of 3 to 10mHz.
• From gravity field modeling point of view, eclipse crossing errors can be interpreted as a temporary bias term on the range rate measurements.
• Depending on the month under study, co-estimation of this calibration parameter in the ITSG-Grace2018 [2] scheme for the available level-1B (RL03) data improves the solution up to 3% RMS over the oceans.

Gravity field recovery from GRACE observations

Linear system model

\[\mathbf{I} = \mathbf{A} x = \mathbf{e} = \mathbf{N}(x, \mathbf{e}) \]

Parameter estimation

\[\hat{\mathbf{x}} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{e} \]

Postfit residuals

\[\hat{\mathbf{e}} = \mathbf{A} \hat{\mathbf{x}} - \mathbf{f} \]

Systematic errors

• Long term errors in frequency band 3-10mHz cannot be described stochastically nor corrected before gravity field recovery, affecting both residuals and gravity parameters.

Fig. 1: Filtered residuals in 3-10 mHz band with respect to GRACE-A (left) argument of latitude (right) ground-track (May 2004).

Fig. 2: Temporal geoid height variations w.r.t GOCC05s static model from (left) ITSG-Grace2016 (right) Official GRACE solutions CSR RL05 (May 2004).

Fig. 3: Temporal bias function in time domain, compared to filtered residuals.

Fig. 4: Mission eclipse transit w.r.t. GRACE-A argument of latitude.

Fig. 5: Filtered residuals w.r.t. GRACE-A argument of latitude.

Fig. 6: Filtered residuals w.r.t. GRACE-A argument of latitude.

Fig. 7: Degree variances w.r.t. GOCC06s static model.

Fig. 8: PSD of the range rate residuals of (left) November and (right) December 2008.

Error modeling

• Approach: Estimate the calibration parameter b within the framework of LS adjustment.

\[\mathbf{e} = \mathbf{B}(\mathbf{b}) + \mathbf{e}_c + \mathbf{e}_s = \mathbf{N}(\mathbf{x}, \mathbf{e}) \]

\[\mathbf{L} = \mathbf{A} \mathbf{x} + \mathbf{B}(\mathbf{b}) + \mathbf{e}_c \]

\[\mathbf{L} = \mathbf{A} [\mathbf{b}] + \mathbf{e}_c + \mathbf{e}_s \]

• Temporal bias \(\mathbf{B}(\mathbf{b}) \): Impulse signals at transit phase + GRACE low pass filter

Characteristics of errors

• \(\Delta \mathbf{b} = 0 \): Errors occurrence.
• Two swap maneuvers in December 2005 and July 2014.
• Before December 2005 and after July 2014: GRACE-A is the leading satellite, \(\Delta \mathbf{b} < 0 \); the pair are entering the shadow.
• Between December 2005 and July 2014: GRACE-B is the leading satellite, \(\Delta \mathbf{b} > 0 \); the pair are entering the sunlight.

Fig. 9: Degree variances w.r.t. GOCC06s static model.

Outlook

• More studies are needed to define specific cause of the systematic errors.
• The implemented approach improves the gravity field solutions, but could be far from an optimal approach. For an optimal modeling, dynamic motion of the satellites and a more realistic eclipse model (e.g. with atmosphere model and the Earth’s oblateness) should be considered.

Acknowledgments

The authors would like to thank the DFG Sonderforschungsbereich (SFB) 1128 Relativistic Geodesy and Gravimetry with Quantum Sensors (geo-Q) for financial support.

References

Contact

Saniya Behzadpour
Email: behzadpour@sbg.ac.at
Phone: +43 316 873-6344