Antarctic contribution to global sea level by 2500 DeConto and Pollard (2016), Nature #### Are we facing an ice apocalypse? COVER STORY ### Ice Apocalypse Rapid collapse of Antarctic glaciers could flood coastal cities by the end of this century. By Eric Holthaus on Nov 21, 2017 In a remote region of Antarctica known as Pine Island Bay, 2,500 miles from the tip of South America, two glaciers hold human civilization hostage. Stretching across a frozen plain more than 150 miles long, these glaciers, named Pine Island and Thwaites, have marched steadily for millennia toward the Amundsen Sea, part of the vast Southern Ocean. Further inland, the glaciers widen into a two-mile-thick reserve of ice covering an area the size of Texas. There's no doubt this ice will melt as the world warms. The vital question is when. The glaciers of Pine Island Bay are two of the largest and fastest-melting in Antarctica. (A Rolling Stone feature earlier this year dubbed Thwaites "The Doomsday Glacier.") Together, they act as a plug holding back enough ice to pour 11 feet of sea-level rise into the world's oceans — an amount that would submerge every coastal city on the planet. For that reason, finding out how fast these glaciers will collapse is one of the most important scientific questions in the world today. To figure that out, scientists have been looking back to the end of the last ice age, about 11,000 years ago, when global temperatures stood at roughly their current levels. The bad news? There's growing evidence that the Pine Island Bay glaciers collapsed rapidly back then, flooding the world's coastlines — partially the result of something called "marine ice-cliff finstability." ### Constraining ice sheet model parameterisations - Use PISM to simulate the present state of the Antarctic Ice Sheet. - Run the model many times. Perturb the model physics each time, sampling as many different parameter combinations as possible. - Identify the model configurations where the simulated evolution of the ice sheet agrees best with observations. **PICO 4.5** 0900-0930 ### Likely changes in global sea level by 2081–2100 IPCC AR5 WG1 report (2013) #### Mechanisms of ice sheet instability DeConto and Pollard (2016), Nature ### How do we project changes in global sea level? Figure 15: PISM's view of interfaces between an ice sheet and the outside world ## Ice sheet models are highly under-constrained ``` mpiexec -n 4 pismr -skip -skip_max 10 -i nomass_20km.nc -sia_e 3.0 -atmosphere given -atmosphere_given_file pism_Antarctica_5km.nc -surface simple -ocean pik -meltfactor_pik 5e-3 -ssa_method fd -ssa_e 0.6 -pik -calving eigen_calving,thickness_calving -eigen_calving_K 2.0e18 -thickness_calving_threshold 200.0 -stress_balance ssa+sia -hydrology null -pseudo_plastic -pseudo_plastic_q 0.25 -till_effective_fraction_overburden 0.02 -tauc_slippery_grounding_lines -topg_to_phi 15.0,40.0, -300.0,700.0 -ys 0 -y 100000 -ts_file ts_run_20km.nc -ts times 0:1:100000 -extra file extra run 20km.nc -extra_times 0:1000:100000 -extra_vars thk,usurf, velbase_mag, velbar_mag, mask, diffusivity, tauc, bmelt, tillwat, temppabase, hardav, Href, gl_mask -o run_20km.nc -o_size big ``` ### Constraining ice sheet model parameterisations • Use the CSIRO Mk3L climate system model to simulate the period 56–0 ka, then 5,000 years into the future under the RCP8.5 scenario Duanne White/University of Canberra