General Assembly 2018 of the European Geosciences Union, April 7-13 2018, Vienna

Contrasting responses of phosphatase kinetic parameters to nitrogen and phosphorus additions in forest soils

Xin-Yu Zhang

Key Laboratory of Ecosystem Network Observation and Modeling, IGSNRR, CAS

申 Institute of Geographic Natural Ł 科 学 Resources 院 地 理 Research, 科 学 Sciences and 与 资源 CAS 研究所

•1 Introduction
•2 Methods
•3 Results

•4 Conclusions

Applications of enzymes in ecology

• Enzyme production and activities can affect ecosystem processes directly, can reflect the effects of climate change, land-use, and pollution...

A phosphatase is an enzyme that uses water to cleave a phosphoric acid monoester into a phosphate ion and an alcohol.

♦Soil phosphatases transform about 20%–80% of soil organic P to available P for plants and microbes uptake.

Enzyme activity as an index

Michaelis-Menten kinetic parameters

Enzymes mainly operate under non-saturated conditions in soils, hydrolytic enzyme activity is substrate (S) dependent and therefore follows the Michaelis–Menten equation.

 $\bigstar K_m$ and the catalytic efficiency are important parameters that can together represent microbial processes in biogeochemical models.

Vmax : Maximal reaction rate when all enzymes are substrate-saturated

 K_m : Michaelis–Menten constant, *reflects* the apparent binding affinity of the enzyme to the substrate K_m affinity

 V_{max}/K_m : catalytic efficiency reflects the enzyme catalytic process relative to both the enzyme-substrate complex dissociation(V_{max}) and the rate of enzyme-substrate complex formation (K_m)

Michaelis-Menten kinetic

Phosphatase follows an economic principle

Micro-organisms will preferentially allocate energy toward the acquisition of whatever resource is most limiting.

Results from meta-analysis indicated that, as N availability increased, microorganisms would allocate more resources towards the production of enzymes used to acquire P; P additions inhibited phosphatase under P only or combined N and P additions.

+However, only one study of N and P additions in a forest was included in the meta-analysis.

Marklein AR & Houlton BZ. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems , New Phytologist, 2012, 193(3): 696-704

Some studies did not follow the economic principle

• Our previous research showed that additions of N and P together could decrease soil phosphatase activity in subtropical agricultural soils.

But additions of P only or N and P together could increase soil phosphatase activity in subtropical forest soils.

Dong WY & Zhang XY. Responses of soil microbial communities and enzyme activities to nitrogen and phosphorus additions in Chinese fir plantations of subtropical China .Biogeosciences, 2015,12:5537–5546

Zhang XY et al., Responses of absolute and specific soil enzyme activities to long term additions of organic and mineral fertilizer. Science of the Total Environment, 2015,536:59–67

Soil phosphatase kinetic parameters variation?

Soil phosphatase kinetic parameters (V_{max} and K_m) declined from the surface downwards in tropical forest soil profiles, and the catalytic efficiencies remained constant at depths of up to 100 cm in soil profiles.

♦ How combined additions of N and P might affect the phosphatase kinetic parameters in forest soils are unclear.

Stone MM & Plant AF. Changes in phosphatase kinetics with soil depth across a variable tropical landscape. Soil Biology & Biochemistry. 2014,71:61-67

Atmospheric nitrogen deposition is increasing

◆Large quantities of N are deposited on subtropical and temperate forests throughout eastern China.

◆In subtropical forests, increasing N deposition may exacerbate existing P limitations; in temperate forests, increasing N deposition has been reported to shift nutrient limitation from N to P.

◆However, the complex linkages between N and P have not yet been resolved at an enzyme kinetic level.

Zhu, J., et al. The composition, spatial patterns, and influencing factors of atmospheric wet nitrogen deposition in Chinese terrestrial ecosystems. Science of the Total Environment. 2015, 511: 777-785.

Objectives and hypotheses

Objectives:

Assessed the responses of phosphatase kinetic parameters to increased N and P availability

Hypotheses:

- I. the V_{max} and the catalytic efficiency would increase after N additions;
- **II.** there would be a greater decrease in the V_{max} and the catalytic efficiency in P-rich soils than in P-poor soils after P additions
- III. the V_{max} and the catalytic efficiency would either increase or decrease under combined N and P additions, depending on whether P was limited or abundant.

申 Institute of Geographic Natural Ł 科 学 Resources 院 地 理 Research, 科 学 Sciences and 与 资源 CAS 研究所

•1 Introduction•2 Methods

•3 Results

•4 Conclusions

Experimental treatments

The long term N and P addition experiments started in 2012 at Qianyanzhou and in 2013 on Changbai and Dinghu Mts.

Four treatments with four replicates were distributed randomly throughout each site, making a total of 48 plots. Each plot measured 20×20 m, and had an area of 400 m².

We sampled the 0-10 cm soils after 4-year nutrient additions.

Secondary conifer mixed broad-leaved forest

control (CK);
N (10 g N m⁻²yr⁻¹ (NH₄NO₃) ;
P (10 g P m⁻²yr⁻¹ (NaH₂PO₄) ;
NP (10 g N m⁻²yr⁻¹ (NH₄NO₃) +10 g P m⁻²yr⁻¹NaH₂PO₄) (+5 g P m⁻² yr⁻¹ for Qianyanzhou)

СК	N
Р	NP

NP	CK
Ν	Р

Site description

	Changbai Mt.(CBM)	Qianyanzhou (QYZ)	Dinghu Mt. (DHM)		
Climate zone	temperate	subtropical	subtropical		
MAT (°C)	2.8	16.8	22.0		
MAP (mm)	731	1629	1733		
Altitude (m)	758	102	240		
Soil type	Albi-Boric Argosols	Ultisols	Latosol		
Vegetation type	Native conifer mixed broad-leaved forest	Chinese fir plantation	Secondary conifer mixed broad-leaved forest		
Main forest	Korean pine(<i>Pinuskoraiensis</i>), mongolian oak (<i>Quercusmongolica</i>)	Chinese fir (<i>Cunninghamialanceolata</i>)	schima root-bark (Schima superb), Chinese red pine (Pinusmassoniana Lamb)		
рН	5.51 ± 0.08 A	4.71±0.03 B	$3.80 \pm 0.06 \mathrm{C}$		
SOC (g kg ⁻¹)	87.5±1.18 A	$16.5\pm0.71~\mathrm{B}$	11.1±1.21 C		
TN (g kg ⁻¹)	$5.6\pm0.05~\mathrm{A}$	$1.2\pm0.07~\mathrm{B}$	$0.9\pm0.05~\mathrm{C}$		
TP (mg kg ⁻¹)	$1022 \pm 41 \text{ A}$	153±8 B	131±13 B		
SOC/TN	15.5±0.2 A	14.0 \pm 0.6 AB	12.7±0.8 B		
TN/TP	5.6±0.23 B	7.7 ±0.11 A	6.8±0.77 AB		

申 Institute of Geographic Natural Ł 科 学 Resources 院 地 理 Research, 科 学 Sciences and 5 资源 CAS 研究所

•1 Introduction
•2 Methods
•3 Results

•4 Conclusions

Michaelis-Menten plots of soil phosphatase

◆ The relationships between the substrate content and the phosphatase activities fitted well to the Michaelis–Menten equation.

Substrate concentration (µmol L⁻¹)

Responses of soil phosphatase kinetic parameters to N

Our first hypothesis, that N additions would increase the V_{max} and the catalytic efficiency, was partly supported, as N additions resulted in consistent increases in the V_{max} and K_m but the catalytic efficiencies were relatively inert.

Response ratios of soil phosphatase kinetic parameters to P and NP

The second hypothesis, that P additions caused the V_{max} and the catalytic efficiency to decrease, was only partly supported in the P-poor subtropical forests, but was not supported in the P-rich temperate forests.

◆In contrast to the second hypothesis in the temperate forest:

> the V_{max} and catalytic efficiencies were increased after P additions.

> the V_{max} and K_m increased about 70% and 50% under NP additions than under CK, and increased more than under either N only or P only additions;

>the catalytic efficiencies remained steady under combined NP additions.

V_{max} and the K_m were positively related to NO₃⁻-N in the P-rich forest soils

	Changbai Mountain			Qianyanzhou			Dinghu Mountain		
	V _{max}	K _m	V _{max} /K _m	V _{max}	K _m	V _{max} /K _m	V _{max}	K _m	V _{max} /K
TP	0.55*	NS	NS	-0. 68**	-0.59*	-0.60*	-0.60*	NS	-0.80**
AvailableP	0.58*	0.56*	NS	-0.72**	-0.58*	-0.74**	-0.75**	NS	-0.80**
AN/AP	-0.53*	-0.53*	NS	0.76**	0.63**	0.71**	0.79**	NS	0.93**
TN/TP	NS	NS	NS	0.80**	0.70**	0.69**	0.66**	NS	0.83**
SOC/TN	NS	NS	NS	0.50*	0.62*	NS	NS	NS	NS
SOC	0.61*	0.51*	NS	NS	NS	NS	NS	NS	NS
NO ₃ ⁻ -N	0.68**	0.62*	NS	NS	NS	NS	NS	NS	NS

* represents P<0.05, ** represents P<0.01, NS representP > 0.05, n=16.

Phosphatase activity is related to N availability

◆ In hardwood forests in the northeastern United States, phosphatase activity is related to N availability but not P availability.

Ratliff TJ & Fisk MC . Phosphatase activity is related to N availability but not P availability across hardwood forests in the northeastern United States. Soil Biology and Biochemistry ,2016,4: 61-69.

Pavailability promoted the abundances of NFGs

◆The abundances of nitrogen functional genes (NFGs) were positively correlated with the concentrations of soil available P.

• P and NP applications caused the soil nitrification rate and NO_3^- -N concentrations to increase.

Tang YQ & Zhang XY. Impacts of nitrogen and phosphorus additions on the abundance and community structure of ammonia oxidizers and denitrifying bacteria in Chinese fir plantations. Soil Biology & Biochemistry, 2016,103: 284-293

Tang YQ & Zhang XY, Changes in nitrogen-cycling microbial communities with depth in temperate and subtropical forest soils. Applied Soil Ecology, 218, 124: 218–228

中 Institute of Geographic Natural Ł 科 学 Resources 院 地 理 Research, 科 学 Sciences and 5 资源 CAS 研究所

•1 Introduction
•2 Methods
•3 Results

•4 Conclusions

Conclusions

• N additions increased the V_{max} and K_m , but had no overall effect on the catalytic efficiency;

while long-term N deposition might mitigate P limitation by increasing phosphatase secretion.

Conceptual scheme of N addition effects on phosphatase

♦ the responses of phosphatase kinetics to P fertilization should be considered differently in P-rich and P-poor soils:

- I. in the P-poor forest soils, the combined NP and the P additions similarly decreased the V_{max} and the catalytic efficiency of phosphatase;
- II. In contrast, in the P-rich forest soils, the combined NP additions increased the V_{max} and the K_m more than under the N or P additions.

Conceptual scheme of P addition effects on phosphatase

This study was financed by the National Natural Science Foundation of China (No. 31290222).

Thank you for your attention!

