

GNSS processing with the raw observation approach in the context of gravity field recovery

Sebastian Strasser, Torsten Mayer-Gürr, Norbert Zehentner

Institute of Geodesy
Graz University of Technology

EGU General Assembly 2018, Vienna

11 April 2018

GNSS processing on a global scale

Raw observation approach

- Use all available observations...
- ... as they are observed by the receiver...
- in a common least squares adjustment.

Processed data

- 15 years from 2003 to 2017
- IGS14 station network
- GPS constellation
- Dual-frequency code and phase (L1, L2)

Processing

- Consistent over full time series
- Daily 24 h solutions
- State-of-the-art models
- igs14.atx antenna calibrations

Paper with all the details coming soon™

Daily GPS orbit RMS relative to IGS combination

Orbits synchronized between all institutions (reference frame differences corrected, outage periods removed)

Daily GPS orbit RMS relative to IGS combination

Orbits synchronized between all institutions (reference frame differences corrected, outage periods removed)

Daily station position RMS relative to IGS combination

All IGS14 stations processed by individual institution used (reference frame differences corrected, outlier removal based on robust 3σ-level)

Application: Recovery of time-variable gravity

Gravity Recovery And Climate Experiment (GRACE)

Gravity Recovery And Climate Experiment (GRACE)

High-low satellite-to-satellite tracking (hISST)

Almost all low Earth orbit (LEO) satellites with a high-quality GNSS receiver can be used.

Satellite missions

- CHAMP
- GRACE
- GOCE
- Swarm
- MetOp
- TerraSAR-X / TanDEM-X
- FORMOSAT-3 / COSMIC
- SAC-C
- Jason
- C/NOFS
- Sentinel

• ...

Time-variable gravity – trend and annual signal (2010-2011)

Agreement between hISST and GRACE (2010-2011)

Application: Recovery of time-variable gravity

Current project: Combined analysis of kinematic orbits and loading

observations to determine mass redistribution

Aim: Improve recovery of time-variable gravity by combining

- Gravity field estimates derived from LEO satellite orbits
- Loading-induced station displacements

Issue: Inconsistencies in background models between

- Available GNSS products
- Gravity field processing

Solution: Consistent processing of

- Dynamic orbits of GNSS satellites
- Kinematic orbits of LEO satellites
- Station positions of a global GNSS station network

Loading theory

Radial and horizontal

Combination test scenario

Two years of consistently processed data (2010-2011)

- GPS constellation
- 6 LEO satellites
- 382 IGS stations

LEO satellites

- CHAMP
- GRACE A and B
- GOCE
- Jason 2
- TerraSAR-X

Gravity field

- Monthly solutions
- Up to degree and order 30
- 750 km Gaussian filter applied in visualizations

Agreement between hISST and GRACE (2010-2011)

Correlation between hISST and GRACE for river catchments

Impact of introducing GPS loading on correlation to GRACE

Impact of introducing GPS loading on correlation to GRACE

Impact of introducing GPS loading on correlation to GRACE

Conclusion and outlook

GNSS processing at Graz University of Technology

- Same level of quality as well-established GNSS processing approaches
- Consistent processing of GNSS orbits, stations positions, and LEO orbits

Combination of hISST and GNSS loading

- Reduction of high-frequency noise improves detection of smaller signals
- Major improvements in regions with high station density
- Issues with signal separation in station position series (earthquakes, snow, multipath, ...)

Main research focus in the future

- Multi-GNSS and multi-frequency processing
- Parametrization improvements in GNSS processing

Thank you!

The project CAKAO has received funding from the Austrian Research Promotion Agency (FFG) within the Austrian Space Applications Programme (ASAP).

Backup slides

Daily GPS clock RMS relative to IGS combination

Clocks synchronized between all institutions (system-wide absolute clock shifts corrected)

Estimated parameters

Exemplary single day processing

- 32 satellites
- 180 stations
- Dual-frequency code and phase
- 30 second sampling

~18 million observations per day

~5.1 million parameters per day

