

EGU General Assembly 2018

Reprocessed GOCE gravity gradients for gravity field recovery --- first results with the time-wise approach

Jan Martin Brockmann¹, Till Schubert¹, Wolf-Dieter Schuh¹ and the GOCE HPF Team esp. Torsten Mayer-Guerr (IFG TU Graz) and Christian Siemes (RHEA for ESA)

¹ Institute of Geodesy and Geoinformation - Theoretical Geodesy - University of Bonn

April 13, 2018

EGU2018, Vienna, Austria, April 13, 2018

Reprocessed GOCE TIM

Introduction and Motivation

Robustification of Decorrelation Filter Estimation

3 Selected Test Data

Results in Terms of Gravity Field Solutions

5 Summary and Conclusions

2

eprocessed GOCE TIM

Motivation

Gravity field models from entire GOCE mission data set published in e.g. Brockmann et al. (2014)

Reprocessed level 1B gravity gradient data

- improved calibration of the gravity gradients (quadratic term)
- cf. Siemes (2018), Siemes et al. EGU18-5319

Advancement within the time-wise approach

- robustification of the decorrelation filter estimation
- advanced detection of suspicious data

 \Rightarrow Will the gravity field significantly improve? Can the improvements be quantified?

Motivation

Gravity field models from entire GOCE mission data set published in e.g. Brockmann et al. (2014)

Reprocessed level 1B gravity gradient data

- improved calibration of the gravity gradients (quadratic term)
- cf. Siemes (2018), Siemes et al. EGU18-5319

Advancement within the time-wise approach

- robustification of the decorrelation filter estimation
- advanced detection of suspicious data

 \Rightarrow Will the gravity field significantly improve? Can the improvements be quantified?

Gravity field models determined with the time-wise approach: solely based on GOCE observations!

$$V(r,\theta,\lambda) = \frac{GM}{a} \sum_{l=0}^{l_{\max}} \left(\frac{a}{r}\right)^{l+1} \sum_{m=0}^{l} \left(c_{lm}\cos\left(m\lambda\right) + s_{lm}\sin\left(m\lambda\right)\right) P_{lm}\left(\cos\theta\right),$$

Focus: solutions only derived from gravity gradients \Rightarrow show quality of new L1B data & algorithms \Rightarrow time-wise approach is well suited (advanced stochastic modeling, GOCE-only, ...)

(1)

Gravity field models determined with the time-wise approach: solely based on GOCE observations!

$$V(r,\theta,\lambda) = \frac{GM}{a} \sum_{l=0}^{l_{\max}} \left(\frac{a}{r}\right)^{l+1} \sum_{m=0}^{l} \left(c_{lm}\cos\left(m\lambda\right) + s_{lm}\sin\left(m\lambda\right)\right) P_{lm}\left(\cos\theta\right),$$

Focus: solutions only derived from gravity gradients \Rightarrow show quality of new L1B data & algorithms \Rightarrow time-wise approach is well suited (advanced stochastic modeling, GOCE-only, ...)

(1)

Starting point are gravity gradient residuals (per component c, per segment s)

$$\mathbf{v}_{c,s} = \mathbf{A}_{c,s}\tilde{\mathbf{x}} - \mathbf{l}_{c,s}$$

Estimation of an AR(q) process as a decorrelation filter from residuals $\mathbf{v}_{c,s}$

$$\mathbf{v}_{c,s}(k) + \mathbf{r}(k) = \sum_{j=1}^{q} \alpha_j \mathbf{v}_{c,s}(k-j) = \mathbf{a}_k^T \boldsymbol{\alpha}$$

Use the filtered, i.e. decorrelated residuals $\hat{=} \, {\bf r}$, to statistically screen the data for suspicious data

Statistically test residuals in moving windows

- large outliers > a threshold
- mean value significantly being different from zero
- larger variances
- statistical occurrence of signs and sign changes
- \Rightarrow account for clusters and gaps between clusters
- \Rightarrow apply tests for different windows, e.g. $\frac{1}{10}$... $\frac{1}{80}$ orbit

 \Rightarrow iterate the procedure

Results

- decorrelation filter per segment s and component c
 - flags for suspicious data

$$\Rightarrow$$
 select only consistent data

Reprocessed GOCE TIM

Test Data Used for Analysis

Two data periods were selected and analyzed in different configurations to test the performance

id	start	end	info
1	09/Nov/2012	04/Feb/2013	-8 km
2	30/May/2013	31/Jul/2013	-30 km

new	new reprocessed data, robust filter
old	old/official data, robust filter
rl5	solution from EGM_TIM_RL05 setup

Two data periods were selected and analyzed in different configurations to test the performance

id	start	end	info
1	09/Nov/2012	04/Feb/2013	-8 km
2	30/May/2013	31/Jul/2013	-30 km

new	new reprocessed data, robust filter
old	old/official data, robust filter
rl5	solution from EGM_TIM_RL05 setup

outlier		obs	V_{XX}		V_{XZ}		V_{YY}		V_{ZZ}		total	
sta	tistics	#	#	%	#	%	#	%	#	%	#	%
1	new	7.5e6	2.9e5	3.8	3.1e5	4.1	2.5 e 5	3.4	2.9 e 5	3.8	1.1 e 6	3.8
	old	7.4 e 6	$2.4 e_{5}$	3.3	1.9 e 5	2.5	$11.5 e_{5}$	15.5	$1.9 e_{5}$	2.5	1.8 e 6	6.0
	rl5	7.8e6	7.8e5	10.0	8.0 e 5	10.3	7.2e5	9.3	$7.4 e_{5}$	9.5	3.0e6	9.8
2	new	5.5e6	0.5 e 5	0.9	0.3 e 5	0.5	0.2 e 5	0.4	0.4 e 5	0.7	$1.4 e_{5}$	0.6
	old	5.4 e 6	0.9 e 5	1.6	0.8 e 5	1.5	3.3 e 5	6.2	0.7 e 5	1.4	5.7e5	2.7
	rl5	5.4 e 6	1.6 e 5	3.1	1.7 e 5	3.2	3.3 e 5	6.2	0.6 e 5	1.2	7.3e5	3.4

outliers in 2nd test period, 1st row: old data, 2nd row: new data

Brockmann et al.

EGU2018, Vienna, Austria, April 13, 201

leprocessed GOCE TIM

Estimated Decorrelation Filters

Test period: 1 example c: V_{XX}

EGU2018, Vienna, Austria, April 13, 201

Estimated Decorrelation Filters

- robust filter: improvments for VYY
- new data: improvments for all components

Estimated Decorrelation Filters

Test period: 2 example c: V_{YY}

- big non-stationarity in old data
- new data: stable estimate

9

Improved Stationarity New Data

eprocessed GOCE TIM

Improved Stationarity New Data

Reprocessed GOCE TIM

solid: empirical from difference to EGM_TIM_RL05, dashed: formal from covariance matrix

UNIVERSITÄT BONN

solid: empirical from difference to EGM_TIM_RL05, dashed: formal from covariance matrix

UNIVERSITÄT BONN

solid: empirical from difference to EGM_TIM_RL05, dashed: formal from covariance matrix

UNIVERSITÄT BONN

solid: empirical from difference to EGM_TIM_RL05, dashed: formal from covariance matrix

UNIVERSITÄT BONN

period: 1 used data: V_{ZZ}

 robust solutions with old data better than rl5

UNIVERSITÄT BONN

- new data performs significantly better for all gradients, for entire spectrum!
- improvement for all 11 components (most VYY)

period: 1
used data:
V_{XX}+V_{XZ}+V_{YY}+V_{ZZ}
▶ significant improvement for

- entire spectrum!
- Can we quantify?

12

Commulative Degree Variances

Improvements of Commulative Errors

period: 1 improvement w.r.t. rl5 solution

- formal errors: stronger
 - improvement
- empirical errors: still 18 % at d/o 200

14

solid: empirical from difference to EGM_TIM_RL05, dashed: formal from covariance matrix

eprocessed GOCE TIM

- even more than for period 1 (>30 % at degree 200)!
- very valuable lowest orbit data

Summary and Conclusions

- ► reprocessing significantly improves the gravity gradient data
- the noise characteristics are more stationary
- advanced robustified decorrelation filters lead to a more realistic error description and identification of suspicious data
- for the analyzed periods gradiometer-only gravity field solutions significantly improve
- ► improvements in the range of 20 to 50 %, depending on the spectral resolution
- ► for GOCE-only models: significant improvements expected

Reprocessed GOCE TIM

Summary and Conclusions

- reprocessing significantly improves the gravity gradient data
- the noise characteristics are more stationary
- advanced robustified decorrelation filters lead to a more realistic error description and identification of suspicious data
- for the analyzed periods gradiometer-only gravity field solutions significantly improve
- ► improvements in the range of 20 to 50 %, depending on the spectral resolution
- ► for GOCE-only models: significant improvements expected

Outlook

- improvement of the nominal mission data?
- verification of identified 'suspicious' data
- ► reprocessing of the entire mission data set ⇒ a release 6 of GOCE models is coming for sure
- reprocessing of high-low SST (removal of systematic effects)

We acknowledge the funding of the reprocessing campaign by the European Space Agency!

Thanks for the attention!

< D > < A <

Reprocessed GOCE TIM

References

J. M. Brockmann, N. Zehentner, E. Höck, R. Pail, I. Loth, T. Mayer-Gürr, and W-D. Schuh. EGM_TIM_RL05: An independent Geoid with Centimeter Accuracy purely based on the GOCE Mission. *Geophysical Research Letters*, 41(22):8089-8099, 2014. doi: 10.1002/2014GL061904.

Christian Siemes. Improving GOCE cross-track gravity gradients. Journal of Geodesy, 92(1):33-45, January 2018. ISSN 0949-7714, 1432-1394. doi: 10.1007/s00190-017-1042-x. URL https://link.springer.com/article/10.1007/s00190-017-1042-x.

• • • • • • • • • •

Image: A 1 = 1