Assessment of Land Cover Map as a Proxy for Soil Type in Large-Area Rockfall Simulations

Jean-Baptiste Barré, David Toe, Jean-Matthieu Monnet & Franck Bourrier UR LESSEM, Université Grenoble Alpes, Irstea, France

Numerical simulations and real-size experiments have supported the development of rockfall models. Remote sensing data now make it possible to implement them at operational scale. However, soil elasticity is a key parameter which remains difficult to map in large areas. This study evaluates the use of land cover map OSO as a proxy for soil type.

Study area

- 20 ha forested hillside in Chamonix Valley, France
 - Mainly sprucedominated stands, a few broadleaf areas
 - Rockfall activity under small cliff

OSO Land Cover map

Material

- Field inventory (2017)
 - Soiltype and roughness: RockyFor3D¹ input parameters
- Land cover maps
 - OSO 2016 (Cesbio)^{2,3}
 - BD Forêt® 2014 (IGN)
- Airborne laser scanning (ALS): 2008, 9 points/m²)

Methods

RockyFor3D rockfall simulations on study area:

Workflow for the creation of simulation input data

- Cubic blocks, 0.125 m³, 2.7 t/m³
- Soil type input
 - from field inventory
 - from OSO cover map
- Tree positions extracted from ALS canopy height model (CHM)
- Release areas mapped based on slope criterion

OSO cover types and corresponding soil parameters

OSO type	Additional criteria	Soil category - parameters*
Water	<u>-</u>	Water - 0
Dense urban	-	Man-made - 0
Sparse urban / Indus. & com areas	Slope<25	iviaii-iiiaue - U
Sparse urban / Indus. & com areas	Slope>25	
Mineral	-	Mineral
Moor with trees	Alt>2000	6, (0.1, 0.1, 0.1)
Grassland	Alt>2000 OR Slope>25	
Grassland	Alt<2000 & Slope<25	Deep soil
Crops / Pastures / Orchards / Vine	-	2, (0.05, 0.05,
Moor with trees	Alt<2000	0.05)
Broaadleaf / coniferous forest	-	Forest soil
		4, (0.1, 0.15, 0.2)
Road	-	Road - 7

* Soil type, (Rg10, Rg20, Rg70)

Trees detected on CHM

Results

- Runout area is globally similar but slight differences in roughness may change results locally
- Topographic criteria improve soil cover information in slope areas
- Workflow is applicable for the whole valley (~ 100 km²)

Soil type from field inventory (left) or OSO (right) Number of passages of simulated rockfalls

Simulated rockfalls for the whole Chamonix valley

 Valley-level information is valuable despite local approximations

Guidelines drawn from the results are expected to help experts figure out when remote sensing products can be safely used for cost-efficient estimation of input data in rockfall simulations.

