
Geo-Python: An open online introduction to programming in Python for geoscientists
David Whipp, Henrikki Tenkanen, and Vuokko Heikinheimo
david.whipp@helsinki.fi

Department of Geosciences and Geography, University of Helsinki, Finland

Check out our course online
geo-python.github.io

Use/modify our course materials
github.com/Geo-Python

Watch course lecture videos
bit.ly/geo-python

References
1. Python Software Foundation, https://www.python.org
2. H. Tenkanen and D. Whipp, https://geo-python.github.io
3. GitHub Classroom, https://classroom.github.com
4. GitHub development platform, https://github.com
5. Spyder development environment, https://github.com/spyder-ide

6. cPouta cloud computing environment, https://research.csc.fi/cpouta
7. Slack communication platform, https://slack.com
8. Presemo live participation system, https://screen.io/en
9. Software carpentry, https://software-carpentry.org
10. Sphinx documentation generator, http://www.sphinx-doc.org
11. JupyterLab environment, https://github.com/jupyterlab/jupyterlab

• Geology and geography are becoming more quantitative

• Basic programming skills are an increasingly important asset for geoscientists

• The Geo-Python course is designed to provide students with these essential skills using Python1

Introduction and motivation
GENERAL COURSE INFORMATION EXPERIENCE AND LESSONS LEARNED OUTCOMES AND FUTURE WORK

Course design and philosophy

Computing
skills

CommunicationContent

Programming concepts
Python syntax
Open science concepts
Geoscience datasets

Lectures
Online discussions

In-class interactions
Group work sessions

Software development
Version control

Collaborative code development
Cloud computing

GitHub4

GitHub Classroom3

Spyder IDE5

Cloud computers6

Course website2

Slack7

Presemo8

GitHub4

Slack7

Student knowledge
and skills gained

Geoscience students often want to learn to program to solve geoscientific problems. The blended
learning environment for the Geo-Python course (inspired by Software Carpentry workshops9) is
designed to provide students with programming experience and essential computing skills. We
also provide hands-on experience with real-world tools1,4-7 (Fig. 1) used by professionals.

Lessons have 3-4 learning goals with exercises that allow instructors to assess student perfor-
mance related to those goals (constructive alignment).

Figure 1. Overview of the Geo-Python course components.

The need for familiar concepts
Geoscience students often struggle to understand fundamental programming concepts such as
lists or arrays, loops, and conditional statements. Teaching using everyday experience and familiar
concepts helps students learn these ideas.

Concept
Lists and index values

Loops

Conditional statements

Everyday example
Button to push on a
vending machine and
the item you select
(Fig. 2)

Daily morning activities
(wake up, brush teeth,
eat breakfast, etc.)

Deciding what to wear
based on the weather Figure 2. Bill the vending machine, used to illustrate

the difference between list indices and list values.

BILL
the vending machine

0 1 2 3 4 5

3 4 5
0 1 2

Select item
Insert money

Effective learning methods and tools
We have found some teaching and content delivery methods are more effective than others.

Cloud computers vs. personal computers
The cloud computer software is easy to
manage. Students tend to prefer using their
personal computers.
Winner: Personal computers

GitHub issues vs. Slack
Course-related questions can be posted in
GitHub keeping everything in one place.
Slack requires visiting another website, but
everyone sees the questions/responses.
Winner: Slack

Basic GitHub documentation vs. Sphinx
Creating course lessons in GitHub is simple.
Sphinx10 requires more effort, but produces
a more navigable course website (Fig. 3).
Winner: Sphinx

More material vs. more time
More material is tempting, but students seem
to need time to learn Python fundamentals.
Winner: More time Figure 3. The for loops lesson on the Geo-Python

course pages from 2016 (upper) and 2017 (lower).

The primary goal of the Geo-Python course is to teach students how to write and use simple Python
programs. How well have we done?

Do students understand key concepts?
Signs point to yes, but we need more data.
Students score highly on assignments that
focus on key programming concepts.

Do students continue using Python?
Many do. Students are increasingly using
Python to complete their assignments in
other courses (80% in one recent course).

What helps their learning?
• Having an easily navigable course
 website

• Posting videos of course lectures
 online

• Providing ample time to complete
 course exercises

How have we fared?

def brittle_shear_strength(cohesion, coeff_friction, normal_stress, fluid_P_factor):
 tau=cohesion+coeff_friction*(normal_stress-(fluid_P_factor*normal_stress))
 tau=tau/10**6
 return tau

Plastic rock failure under compression and tension
compressional_failure_wetgranite=[] #wet granite
tensional_failure_wetgranite=[]
for i in range(len(depth)):
 failure_wetgranite=fls.plastic_failure(c_o,u,stress_normal_wetgranite[i],lambd)
 compressional_failure_wetgranite.append(failure_wetgranite[0])
 tensional_failure_wetgranite.append(failure_wetgranite[1])

Figure 4. Example plot and Python code snippet from an assign-
ment in a course taken after completing the Geo-Python course.

Future work and course development
We have several plans to further develop the Geo-Python course.

1. Collection of detailed student survey data
We are currently designing surveys for students from the past 2 years to gain a better assess how
well they understand Python and whether they have continued to use it at work or in their studies.

2. Course changes to ensure more advanced students stay engaged
Some students already have programming experience when they take the Geo-Python course. We
are working to make sure the course design has methods to challenge more experienced students
while not overwhelming new programmers.

3. Integration of code and documentation using JupyterLab
We are taking steps to explore ways in which code and its documentation (answers to exercise
questions) can be integrated. JupyterLab11, for example, could provide a means to teach introduc-
tory Python concepts in a Python console and later transition to Jupyter Notebooks where code
and documentation could coexist.

