The dynamics of inertial particle ensembles In raindrop
formation and sedimentation.

In the early stages of raindrop formation, billions of inertial water droplets
are advected by the vortices of a cloud. The inertial properties of the parti-
cles affect the rate at which they collide and consequently grow (Falkovich,
Dec 2007, AMS). Particle clustering and variable sedimentation rates also
govern the lifespan of plane grounding ash clouds and the distance for which
river pollutants are carried. In these examples, the particles interact with
one another and the surrounding fluid creating a complex and numerically
costly dynamical system. We present a transter operator, W;;, able to ef-
ficiently capture the emergent behaviour of the inertial particle ensemble in
the natural world.

The trajectories of inertial particles

Dynamics of small, rigid, spherical particles can be described by the Maxey-Riley equation
(Mazey, 1983, Phys. of Fluids). To allow the transfer operator to encapsulate the dynamics
of (1) in an Eulerian sense take the following steps:

Fluid acceleration Basset force

3R 3RDu R . 3R (" 1 d
(1_7)g+ > Dt st = Ua ), Vi e O

Buoyancy force Stokes drag
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Reduce dynamics via a series expansion in € = St/ R (Sapsis, 2008, Physica D)
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Particle velocity i1s now uniquely defined everywhere in space, allowing W;; to be found.

Constructmg the transfer operator

e Space is discretised over a regu- e The fluxes are encoded into W;.

lar Cartesian grid.
e In an unsteady flow, the remap-

ping is repeated every fluid

B
’ e Particles are advected from the

A corners of grid cells. After ot time step.

they define a new shape. .
e In a steady flow, the dominant
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The turbulent velocity field

We test W;; in a decaying superposition of ABC flows in the presence of gravity. The flow,
a good analogue for a turbulent cloud, or turbulent river, is evolved using MOBILE, a third
order ILES scheme over a regular cartesian mesh.
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Figure 3: The decaying energy spectrum of the test flow (left) initialised with (4) and A =
0.09, B=10.1,C = 0.11. Planar snapshot of the velocity field at two time instants (right).

Sedimentation in a turbulent flow

To test W;; 1n a sedimentation context, we compare predictions made by W;; to actual particle
distributions in the fluid velocity field described above.

Figure 4: The distribution of par-
ticles per cell, P", after 5, 15 and 30
seconds. The distribution is shown
for the transfer operator (black line),
and a simulation of 5 x 10° indi-
vidual trajectories (red line). For
the red line particle positions have
undergone one iteration of spatial
smoothing, allowing comparison be-
tween the continuous transfer oper-
ator and the discrete particle data.
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Where next? Building a statistical model of
raindrop formation.
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A key motivation for our approach is that it can be extended to model more complicated
and interesting processes. As an example we present the steps for creation of a statistical
model of raindrop formation (a work in progress).

e The new shape is redistributed

amongst 1its neighbours to
find the between cell fluxes.

eigenvector of W;; gives the
long term behaviour of the
system.

W;; allows us to write Pf’“ = W;; P!', where P! represents the number of particles in each
cell of a discretised phase space. j is the cell index, and n enumerates times steps. We can
now move particles in space in a probabilistic sense.
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Figure 2: Aerosol particles are ejected from Q;(OTt’iCGS and preferentially clust)ér between them.
This behaviour is shown for: (left to right) a sample of 4 x 10° inertial particles; the particles
after binning and one iteration of spatial smoothing; the transfer operator W,;. As the number
of bins and particles are increased, the central and rightmost images converge to one another.

distribution indicates more cluster-
1ng.
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Figure 5: The vertical dis-
tribution of particles P(z, 1)
produced by W, (top), and
a simulation of 5 x 10° par-
ticles (bottom). The parti-
cle radius was 5 x 107%(m).
FEarly in the simulation, the
transfer operator produces a
sedimentation rate close to
2 that of the particle stmula-
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e 1 Particles behave differently at dif-
ferent diameters: their scale space
is discretised.

e 2 The transfer operator redistributes
particles in each level of scale
space.

e 3 We assume particles are normally
distributed at the subgrid scale.

e 4 (Collision rates are approximated
probabilistically based on the lo-
cal particle concentration.

e 5 Assuming coalescence, collisions
move particles in scale space.

e 6 The rate of mass flux, through the
scales, governs the rate at which a
cloud produces rain.

Summary

We have developed a method for tracking an ensemble of inertial particles in an Eulerian

SEI1SE.

Particle dynamics are reduced to an inertial manifold to allow a linearisation of the Perron-
Frobenious-Ruelle or transfer operator to be constructed.

The transfer operator makes good predictions about sedimentation rates and degree of

preferential concentration of particles.

The method is readily augmented to statistically model complicated processes such as par-
ticle collisions in raindrop formation and density forcing on the fluid phase. In both cases

this work is ongoing.
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