Origin and historical inputs of suspended particulate matter (SPM) from the Rhône tributaries: use of the non-reactive geochemical signature of particles.

Céline Bégorre (1), Aymeric Dabrin (3), Matthieu Masson (1), Ghislaine Grisot (1), Lysiane Dherret (1), Frédérique Eyrrole-Boyer (2), Alain Veron (3), Brice Moutier (4), and Marina Coquery (1)

Contact: celine.begorre@irstea.fr

Vienna, 2018

Objectives:
- Determine the origin of SPM from the Rhône River tributaries:
 - Estimate relative contributions of SPM fluxes using conservative tracers (major and trace elements in the residual fraction, particle size correction)
 - Estimate uncertainties associated with these contributions
- Determine the historical SPM inputs of the tributaries by applying the fingerprinting approach on a sediment core.

Context:
- The determination of sediment origin is essential to manage suspended particulate matter inputs in river systems.
- SPM contribute to the transport of a large amount of essential contaminants in rivers.
- The Rhône River is the main sediment input to the Mediterranean Sea. The Rhône sediment observatory (OSR) program aims to develop a fingerprinting approach in Rhône River watershed with a large number of SPM samples over 7 years (n = 300).

Material and methods:
- The SPM sampling strategy includes centrifugation (C) Approximately 4h, Particle trap (PT) (2 weeks to 1 month), and the Rhône River basin enlarged map.
- The sample treatment and analysis involves total mineralization, soft extraction, heating block, and data treatment and geochemical mixing model.

Residual metal concentrations in SPM samples:
- Residual Al, Ba, and Zn concentrations in SPM in Rhône River tributaries.

Source fingerprinting in the Upper Rhône:
- Geochemical mixing model results from SPM data: relative source contributions in %.
- The data treatment and geochemical mixing model involves Kruskal-Wallis test + Discriminant Function Analysis → tracer selection, Mixing model + Monte Carlo analysis (1000 repetitions) + relative source contribution estimates + uncertainties, and Data treatment: standardisation, particle size correction (Gelli and Now, 2011).

Conclusions:
- Original approach to trace with the residual fraction of SPM in Upper Rhône
- Discriminant elements were found
- Robust relative contribution results at the sample and Upper Rhône scales
- Try to reduce uncertainties of relative contributions by applying a particle size correction factor [1]
- Complete the OSR SPM database as a number of samples are missing, on some tributaries, to trace SPM sources at Arles stations and in sediment core
- Historical SPM inputs in the Upper Rhône
- Compare SPM and sediment core results

Perspectives:
- Application of the non-reactive geochemical signature of particles to SPM in Rhône River tributaries
- Improve the approach with more samples and different sites

References:
(1) Irstea, UR Rivière, centre de Lyon-Villeurbanne, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France. (2) Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-EM, SIÈRE/LRTA, BP 3, Saint-Paul-lez-Durance, France. (3) CERGE, Av-Marseille Univ, CNRS, IRD, Coll de France, Europe Méditerranéen de l’Arsenal, 8800, Av en Provence Cedex 04, France, (4) Université de Lyon, UMR5023 Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés, Université Lyon 1, ENFPE, CNRS, 3, rue Maurice Audin, 69518 Vaulx-en-Velin, France.