DDK-filter Reassessment using Time Variable Error Covariance Information

Elisa Fagiolini, Michael Murböck, Christoph Dahle, Christian Gruber, Frank Flechtner

GFZ German Research Centre for Geosciences
1.2 Global Geomonitoring and Gravity Field

elisa.fagiolini@gfz-potsdam.de, murboeck@gfz-potsdam.de
GRACE - Why time variable filtering?

- Decreasing altitude \rightarrow increasing sensitivity
- Changing ground track pattern \rightarrow changing correlations within parameters
- Varying instrument performance

Upward continuation

$$u = \left(\frac{r_e}{r_e + h_{GRACE}} \right)^{l+1}$$

<table>
<thead>
<tr>
<th>SH degree l</th>
<th>$u_{500\ km}/u_{350\ km}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>2.0</td>
</tr>
<tr>
<td>60</td>
<td>3.8</td>
</tr>
<tr>
<td>90</td>
<td>7.4</td>
</tr>
<tr>
<td>120</td>
<td>14.4</td>
</tr>
</tbody>
</table>

more ...
Reassessing DDK

<table>
<thead>
<tr>
<th></th>
<th>DDK</th>
<th>VDK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[Kusche, 2007; Kusche et al. 2009]</td>
<td>DDK reassessment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(cf. Horvath, 2017)</td>
</tr>
<tr>
<td>Error VCM</td>
<td>Constant (based on older VCM; block diagonal)</td>
<td>Time variable (based on actual RL05a VCM; full)</td>
</tr>
<tr>
<td>Signal VCM</td>
<td>Constant (based on Hydrological model; SH degree dependent)</td>
<td></td>
</tr>
<tr>
<td>Filter parameter</td>
<td>$\frac{\alpha_{DDK1}}{\alpha_{DDK5}} = 1000$</td>
<td>$\frac{\alpha_{VDK1}}{\alpha_{VDK5}} = 1000$</td>
</tr>
</tbody>
</table>
Closed-loop validation

Monthly (bad coverage) residuals in terms of surf. mass dens. in mm ewh.

DDK4

Destriping + 300 km Gaussian

VDK4

Global absolute annual amplitude RMS of truth and residuals with different filters and filter strengths
Conclusions

• Time variable decorrelation filter using the most accurate error (and signal) VCM proposed for GRACE (and GRACE-Follow-On) data in order to account for changing sensitivity

• Candidate filter method for GFZ Level 3 processing (cf. Dahle et al., EGU2018-17878, Poster on the new GFZ Level 3 web portal GravIS)

• Closed-loop simulation results show
 – smallest global residuals for bad coverage months
 – better global retrieval of linear and annual terms than static DDK
 – smaller basin residuals compared to DDK and Destriping+Gaussian

• Real data analyses show a reduction of the total RMS over the oceans for the GFZ RL05a time series around 16% (VDK5 vs. DDK5) and 18% (4)
Introduction

Filter assessment

Filter characteristics

Validation
 • Closed-loop simulation
 • Real data analysis

Conclusions

elisa.fagiolini@gfz-potsdam.de, murboeck@gfz-potsdam.de
Which filter to be applied?

Isotropic

Homo-
geneous

Gaussian

Inhomo-
geneous

Anisotropic

Destriping
[Swenson and
Wahr, 2006]

Regularization
[Kusche, 2007]

[Devaraju, 2015]
Which filter to be applied?

Isotropic

Anisotropic

Homo-
geneous

Inhomo-
geneous

normalized kernel values

distance from kernel center (lon.=lat.=0) in km

300 km Gaussian
DDK3, West-East dir.
DDK3, South-North dir.

[Devaraju, 2015]

[Swenson and Wahr, 2006]

[Kusche, 2007]
Reassessing DDK

\[\mathbf{x}_\alpha = \left(\mathbf{N} + \alpha \mathbf{M} \right)^{-1} \mathbf{N} \mathbf{x} \]

filtered spherical harmonic (SH) coefficients

Inverse error variance-covariance matrix (VCM)

Regularization/Filter parameter

Inverse signal VCM

raw SH coefficients

Filter matrix \(\mathbf{W}_\alpha \)

[Kusche, 2007; Kusche et al. 2009]
Reassessing DDK

<table>
<thead>
<tr>
<th>DDK</th>
<th>VDK</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Error VCM</th>
<th>Constant (based on older VCM; block diagonal)</th>
<th>Time variable (based on actual RL05a VCM; full)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal VCM</td>
<td>Constant (based on Hydrological model; SH degree dependent)</td>
<td></td>
</tr>
<tr>
<td>Filter parameter</td>
<td>$\frac{\alpha_{\text{DDK}1}}{\alpha_{\text{DDK}5}} = 1000$</td>
<td>$\frac{\alpha_{\text{VDK}1}}{\alpha_{\text{VDK}5}} = 1000$</td>
</tr>
</tbody>
</table>
Filter characteristics

Simulated error VCM (cf. Flechtner et al., 2016):

• 5 years GRACE-like simulation with decreasing altitudes from 490 to 450 km and realistic instrument errors
• Software: GFZ´s Earth Parameters and Orbits System (EPOS)
• Maximum spherical harmonic (SH) degree and order 100

Real data VCM:

• GRACE GFZ RL05a (processed with EPOS)
• Maximum spherical harmonic degree and order 90
Filter kernel of VDK3 (03/2004)
Mean Gaussian radius: VDK3 vs. DDK3

Decreasing altitude \rightarrow decreasing mean Gaussian radius

Bad coverage (08/2003) effect not visible in mean Gaussian radius
Mean Gaussian radius: DDK vs. VDK

Periodic variations in mean Gaussian radius, especially for VDK1.
Mean Gaussian radius: DDK vs. VDK

<table>
<thead>
<tr>
<th></th>
<th>DDK</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>WE</td>
<td>685</td>
<td>482</td>
<td>357</td>
<td>329</td>
<td>275</td>
<td></td>
</tr>
<tr>
<td>SN</td>
<td>439</td>
<td>328</td>
<td>256</td>
<td>239</td>
<td>207</td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>562</td>
<td>405</td>
<td>307</td>
<td>284</td>
<td>241</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VDK</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean WE</td>
<td>701</td>
<td>489</td>
<td>361</td>
<td>332</td>
<td>278</td>
</tr>
<tr>
<td>mean SN</td>
<td>588</td>
<td>420</td>
<td>316</td>
<td>292</td>
<td>248</td>
</tr>
<tr>
<td>mean</td>
<td>645</td>
<td>455</td>
<td>339</td>
<td>312</td>
<td>263</td>
</tr>
</tbody>
</table>

Significant larger VDK SN radii compared to DDK
Closed-loop simulation

- Five years 01/2002-12/2006 based on GRACE-like mission design
- Initial altitude 490 km, final altitude 450 km
- Realistic instrument and background model errors applied
- Ground truth: ESA Earth system model AOHIS (Dobslaw et al. 2015)
- Software: GFZ’s Earth Parameters and Orbits System (EPOS)
- Maximum SH degree and order 100

Further details in Flechtner et al. (2016): *What Can be Expected from the GRACE-FO Laser Ranging Interferometer for Earth Science Applications?*
Simulated orbit coverage in 2003
Filtered residuals wrt. static reference in 08/2003

Surface mass densities in mm ewh.
Ocean/Land total RMS of the truth and the residuals for Destriping, DDK and VDK filters

- C_{20} neglected
- Reference Gaussian filtered \rightarrow omission error reduction
- 500 km land area extension
- RMS weighted by \cos(latitude)
- All months
Ocean/Land total RMS of the truth and the residuals for the different filters

- C_{20} neglected
- Reference Gaussian filtered → omission error reduction
- 500 km land area extension
- RMS weighted by \cos(latitude)
- 2 bad months neglected
Ocean/Land total RMS of the truth and the residuals for the different filters

- C_{20} neglected
- Reference Gaussian filtered → omission error reduction
- 500 km land area extension
- RMS weighted by cos(latitude)
- Linear and annual terms subtracted
Ocean/Land monthly RMS of the truth and the residuals for Destriping, DDK3 and VDK3 filters

- Reference 340 km Gaussian filtered → omission error reduction
- 500 km land area extension
- RMS weighted by cos(latitude)
Ocean/Land monthly RMS of the truth and the residuals for Destriping, DDK3 and VDK3 filters

- Reference 340 km Gaussian filtered \(\rightarrow\) omission error reduction
- 500 km land area extension
- RMS weighted by cos(latitude)
- Linear and annual terms subtracted
Ocean/Land total RMS of linear trend for the truth and the residuals for the different filters

- C_{20} neglected
- Reference Gaussian filtered \rightarrow omission error reduction
- 500 km land area extension
- RMS weighted by \cos(latitude)
Ocean/Land total RMS of annual amplitude for the truth and the residuals for the different filters

- C_{20} neglected
- Reference Gaussian filtered → omission error reduction
- 500 km land area extension
- RMS weighted by \cos(latitude)
Basin analysis

• 13 basins for large and smaller rivers
• Simple integration mask
• Reference 300 km Gaussian filtered → omission error reduction
• Performance criteria:
 • Raw RMS of the difference wrt. the truth
 • Comparison of linear and annual parameters
 • RMS of linear and annual reduced residuals
Raw residual RMS in mm ewh.

<table>
<thead>
<tr>
<th>Basin #grid points</th>
<th>Basin Name</th>
<th>DDK1</th>
<th>DDK2</th>
<th>DDK3</th>
<th>DDK4</th>
<th>DDK5</th>
<th>V1</th>
<th>V2</th>
<th>V3</th>
<th>V4</th>
<th>V5</th>
<th>SG300</th>
</tr>
</thead>
<tbody>
<tr>
<td>497</td>
<td>Amazon</td>
<td>7.6</td>
<td>6.7</td>
<td>6.5</td>
<td>6.6</td>
<td>7.0</td>
<td>7.6</td>
<td>6.6</td>
<td>6.2</td>
<td>6.3</td>
<td>6.5</td>
<td>6.9</td>
</tr>
<tr>
<td>450</td>
<td>Ob</td>
<td>9.5</td>
<td>6.8</td>
<td></td>
<td>7.3</td>
<td>10.0</td>
<td>12.7</td>
<td>9.7</td>
<td>8.6</td>
<td>8.6</td>
<td>9.2</td>
<td>7.0</td>
</tr>
<tr>
<td>358</td>
<td>Mississipi-Missouri</td>
<td>9.2</td>
<td>7.4</td>
<td>7.2</td>
<td>7.2</td>
<td>10.7</td>
<td>8.2</td>
<td>7.2</td>
<td>7.1</td>
<td>7.2</td>
<td>8.6</td>
<td></td>
</tr>
<tr>
<td>311</td>
<td>Congo</td>
<td>18.2</td>
<td>11.0</td>
<td>9.9</td>
<td></td>
<td>10.2</td>
<td>27.2</td>
<td>14.1</td>
<td>11.2</td>
<td>10.9</td>
<td>11.0</td>
<td>13.6</td>
</tr>
<tr>
<td>263</td>
<td>Nile</td>
<td>27.4</td>
<td>23.1</td>
<td>21.5</td>
<td>20.9</td>
<td>19.5</td>
<td>29.1</td>
<td>19.1</td>
<td>16.5</td>
<td>17.1</td>
<td>26.6</td>
<td></td>
</tr>
<tr>
<td>188</td>
<td>Niger</td>
<td>14.3</td>
<td>11.7</td>
<td>10.8</td>
<td>10.8</td>
<td>12.1</td>
<td>17.8</td>
<td>13.1</td>
<td>10.5</td>
<td>10.6</td>
<td>11.8</td>
<td>13.0</td>
</tr>
<tr>
<td>158</td>
<td>Ganges-Bramap.</td>
<td>28.1</td>
<td>15.3</td>
<td>13.7</td>
<td>13.8</td>
<td>14.7</td>
<td>42.2</td>
<td>17.6</td>
<td>7.4</td>
<td>6.7</td>
<td>7.1</td>
<td>19.4</td>
</tr>
<tr>
<td>94</td>
<td>Danube</td>
<td>14.8</td>
<td>10.3</td>
<td>9.3</td>
<td>9.2</td>
<td>9.1</td>
<td>17.8</td>
<td>13.8</td>
<td>9.1</td>
<td>8.8</td>
<td>8.6</td>
<td>8.5</td>
</tr>
<tr>
<td>89</td>
<td>Indus</td>
<td>24.5</td>
<td>14.2</td>
<td>14.0</td>
<td>14.8</td>
<td>17.0</td>
<td>36.8</td>
<td>20.2</td>
<td>12.8</td>
<td>12.4</td>
<td>13.1</td>
<td>18.2</td>
</tr>
<tr>
<td>81</td>
<td>Orinoco</td>
<td>58.0</td>
<td>30.0</td>
<td>23.8</td>
<td>22.0</td>
<td>20.0</td>
<td>87.0</td>
<td>45.0</td>
<td>26.0</td>
<td>23.2</td>
<td>19.6</td>
<td>40.4</td>
</tr>
<tr>
<td>74</td>
<td>Mekong</td>
<td>36.5</td>
<td>23.2</td>
<td>20.5</td>
<td>21.0</td>
<td>23.6</td>
<td>45.7</td>
<td>28.8</td>
<td>18.8</td>
<td>17.3</td>
<td>17.4</td>
<td>29.7</td>
</tr>
<tr>
<td>30</td>
<td>Parnaiba</td>
<td>46.3</td>
<td>32.3</td>
<td>29.2</td>
<td>28.8</td>
<td>28.6</td>
<td>55.7</td>
<td>43.3</td>
<td>28.8</td>
<td>27.7</td>
<td>27.1</td>
<td>26.8</td>
</tr>
<tr>
<td>25</td>
<td>Rhine</td>
<td>20.8</td>
<td>18.5</td>
<td>29.1</td>
<td>33.8</td>
<td>49.0</td>
<td>31.0</td>
<td>16.4</td>
<td>24.3</td>
<td>27.6</td>
<td>35.6</td>
<td>16.0</td>
</tr>
<tr>
<td>MEAN</td>
<td></td>
<td>24.2</td>
<td>16.1</td>
<td>15.8</td>
<td>15.8</td>
<td>17.5</td>
<td>31.0</td>
<td>19.7</td>
<td>14.4</td>
<td>13.6</td>
<td>14.7</td>
<td>18.1</td>
</tr>
</tbody>
</table>

Smallest residuals
Linear and annual terms and residual RMS in mm ewh.

<table>
<thead>
<tr>
<th>Basin #grid points</th>
<th>Basin Name</th>
<th>Linear trend / year</th>
<th>Annual amplitude</th>
<th>Annual phase in day of max.</th>
<th>Residual RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Truth</td>
<td>DDK4 VDK4</td>
<td>Truth DDK4 VDK4</td>
<td>DDK4 VDK4</td>
</tr>
<tr>
<td>497</td>
<td>Amazon</td>
<td>2.2 1.7 0.3 22.4 24.6</td>
<td>21.8 69 71 70</td>
<td>6.5 5.8</td>
<td></td>
</tr>
<tr>
<td>450</td>
<td>Ob</td>
<td>39.2 42.3 42.6 21.9</td>
<td>24.6 24.5 58 63</td>
<td>64 5.7 8.6</td>
<td></td>
</tr>
<tr>
<td>358</td>
<td>Mississipi-Missouri</td>
<td>-7.1 -6.5 -6.4 13.2</td>
<td>14.6 16.2 141 118</td>
<td>117 5.8 4.8</td>
<td></td>
</tr>
<tr>
<td>311</td>
<td>Congo</td>
<td>-1.2 -0.7 -1.4 4.0</td>
<td>6.1 6.2 278 282</td>
<td>273 9.4 9.9</td>
<td></td>
</tr>
<tr>
<td>263</td>
<td>Nile</td>
<td>-1.4 0.0 -1.5 7.1</td>
<td>9.8 11.4 264 244</td>
<td>247 11.9 11.0</td>
<td></td>
</tr>
<tr>
<td>188</td>
<td>Niger</td>
<td>-0.9 -1.8 -1.8 3.4</td>
<td>5.3 5.7 262 220</td>
<td>240 13.7 9.9</td>
<td></td>
</tr>
<tr>
<td>158</td>
<td>Ganges-Bramap.</td>
<td>-5.6 -4.7 -5.3 20.8</td>
<td>20.4 20.5 284 274</td>
<td>276 12.1 5.8</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>Danube</td>
<td>-1.9 -1.3 -1.0 10.3</td>
<td>18.2 13.8 251 248</td>
<td>248 17.2 8.7</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>Indus</td>
<td>2.4 2.7 1.7 12.9</td>
<td>9.2 7.2 304 317</td>
<td>314 17.0 9.2</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>Orinoco</td>
<td>4.2 5.4 6.0 13.7</td>
<td>17.6 15.4 58 79</td>
<td>67 17.2 9.1</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>Mekong</td>
<td>0.2 -1.3 -2.8 22.4</td>
<td>21.9 22.2 262 264</td>
<td>267 13.3 10.3</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Parnaiba</td>
<td>-0.7 4.0 0.3 18.1</td>
<td>17.2 13.0 77 81</td>
<td>74 20.7 17.9</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Rhine</td>
<td>-1.1 0.8 2.1 9.6</td>
<td>13.4 18.5 248 293</td>
<td>272 37.3 18.8</td>
<td></td>
</tr>
<tr>
<td>MEAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14.4 10.0</td>
</tr>
</tbody>
</table>

Smallest residuals Not significant
Real data analysis

GRACE GFZ RL05a solutions 2002 – 2017

7 day repeat cycle in 12/2009
Surface mass densities for 12/2009: DDK1/2, VDK1/2
GRACE short repeat cycles

- Altitude in km
- Revolution time in min.
- Equator gaps in km

EGU 2018, Vienna, Austria, 9 April 2018
RMS over ocean/land

Ocean RMS improvement VDK vs. DDK median: VDK5 (16%), VDK4 (18%)
Conclusions

• Time variable decorrelation filter using the most accurate error (and signal) VCM proposed for GRACE (and GRACE-Follow-On) data in order to account for changing sensitivity
• Candidate filter method for GFZ Level 3 processing (cf. Dahle et al., EGU2018-17878, Poster on the new GFZ Level 3 web portal GravIS)
• Closed-loop simulation results show
 – smallest global residuals for bad coverage months
 – better global retrieval of linear and annual terms than static DDK
 – smaller basin residuals compared to DDK and Destriping+Gaussian
• Real data analyses show a reduction of the total RMS over the oceans for the GFZ RL05a time series around 16% (VDK5 vs. DDK5) and 18% (4)
GRACE-like correlation RMS per SH order

Off diagonal correlations
- Parallel to main diagonal
 \(m_i - m_j = \text{const.} \)
- Perpendicular to main diag.
 \(m_i + m_j = \text{const.} \)

[Murböck et al., 2016, GSTM]
GRACE correlations, $m_i - m_j = \text{const.}$
GRACE correlations, $m_i + m_j = \text{const.}$

Effects of resonances for $m < 2 \cdot l_{\text{max}}$

[Source: Murböck et al., 2016, GSTM]