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Cosmic radiation due to high
energy gamma rays and
cosmic ray particles
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Cosmic radiation due to high

Atmospheric radon energy gamma rays and
exhaled from rocks cosmic ray particles

and soils
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Challenges in Airborne Gamma-Ray Spectroscopy (AGRS)




e Radgyro: a prototype aircra

Engine: 1.6 liter turbo — 90 kW
Payload: 150 kg

Fuel: 90 liter of regular gasoline
Length: 5.2 m

Width: 2 m

Rotor: 8.5 m

Space for take off < 70 m

Flight autonomy ~3.5 hours
Investigated area ~50 km?/h

Easy to move without disassemble

or multiparametric surveys
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* Gamma cosmic radiation is a component of secondary cosmic rays
* At E>3 MeV all gamma radiation has cosmic origin

* In the lower atmosphere the intensity of cosmic gamma radiation exponentially
increases with increasing altitude: the count rate altitude profile was reconstructed
in the Cosmic Energy Window (CEW) (3.0 — 7.0) MeV and in the
Tallium Energy Window (TEW) (2.4 — 2.8) MeV
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Cosmic spectral shape

The cosmic SpECtraI shape of a Gamma spectrum composed of 870 1 sec spectra
measured gamma spectrum can be acquired in the (2050 — 2150) m elevation range

reconstructed inthe . [ ARMARAAAARRAAAARRRS ARMAAAAAERAAAARAAS AN AMARARA
- Fit in CEW 7]
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e Cosmic Energy Window (CEW): the %
counting statistics has pure cosmic g
nature but the sole reconstruction §
of the high energy tail is affected by ©
large uncertainties
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Energy [MeV]
Energy v line Energy range Count rate at
Window [MeV] [MeV] (2050 — 2150) m [cps]
KEW 1.46 (*9K) 1.37-1.57 12.2
BEW 1.76 (*1*Bi) 1.66 -1.86 8.7
TEW 2.61 (298TI) 2.41-2.81 8.8
CEW / 3.00-7.00 41.9
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Cosmic spectm’ sFape

The cosmic SpECtraI shape of a Gamma spectrum composed of 870 1 sec spectra

measured gamma spectrum can be acquired in the (2050 — 2150) m elevation range
reconstructed in the — [T ARAARAAAL MAAMAAMAA MMM T ARRAARAAS
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The CR in the natural radionuclides energy windows are linearly related to the count

rate in the CEW
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Linear regressions between count rates in the i-th energy window and in CEW allow

for correcting for background the CRs measured during regional AGRS surveys

b: cosmic stripping | Energy Reduced
[ ] + + i

ratio Window (a £ 3a) [cps] | (b +3db)[cps/cpsin CEW] MDA 2

a: aircraft constant KEW 3.7+0.4 0.20 + 0.01 0.05-102g/g | 1.00

background count

BEW 2.0+0.4 0.16 + 0.01 0.4 1.02
rate ug/g

TEW 1.58 + 0.04 0.179 + 0.002 0.8 ug/g 1.02
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The CR in the natural radionuclides energy windows are linearly related to the count

rate in the CEW
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A new model for the BEW count rate altitude prome

* In presence of atmospheric radon, the z [m]4

CR in the BEW comprises an additional
altitude dependent component coming
from atmospheric 21*Bi (Rn):
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* Atmospheric ?22Rn vertical profile == ==
typically shows a diurnal mixing layer at e e e W

s~1-2 km ”EEW [cps]

* A new theoretical model was developed 3.0
to describe the n,, vertical profile on the
basis of the 222Rn concentration
distribution and of the mean free path of
214Bj unscattered photons, which is
responsible for the r ~ 400 m AGRS | | |
spherical field of view ° R T )
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A new model tor the BEW count rate altitude profile

* In presence of atmospheric radon, the z [m] 4
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A new model for the BEW count rate altitude prome
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The theoretical model is applied for fitting the experimental count rate in the BEW
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Height [m] Height [m]
Model Agew £ 0Agew [cPS] | Mgew = OMgey [M] | Bgpy, £ 0Bgpy, [cps] | s+ 8s[m] | C+8C [cps] | Reduced ¥
8.2+0.2 (2.54 £0.06)-104 -49+0.2 1318 £22 | 0.68 +0.05

* The new model, accounting for the a homogeneous ???2Rn layer,

. . & tmospheric Ragep,
provides a better fit compared to the ?22Rn free standard model e e
ment: q nove/
. . . appr
* The mean 222Rn concentration ag, = (0.96% 0.07) Bq/m?3 and mixing o based on

layer depth s = (1322 * 22) m are in agreement with the literature

See Poster




KZE! FOV‘ measuring cosmic e""ecflve HOSQ

* The AGRS detector Za0l T T T ]
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* On the basis of this Count rate CEW [cps]
. . EMS
calibration, the AGRS CED

a [uSv/y] | b [uSv/(y-cps)] r2
o AN 4.16+0.59| 3.26+0.02 | 0.996
SIS -1.67+0.67| 3.62+0.02 | 0.996

“CARI-6 program to calculate galactic cosmic radiation” Federal Aviation Administration (2014)
“Analytical model for estimating terrestrial cosmic ray fluxes nearly anytime and anywhere in the world: Extension of PARMA/EXPACS” T. Sato (2015)

spectrometer can be

used a dosimeter




Take away highlights

The cosmic spectral shape of a measured gamma spectrum
was reconstructed by using as additional constraints to the

high energy tail the cosmic count rates measured in the
——=  40K,214Bj and 2°%T| photopeaks
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20 100 130 200 20 a0, MEAsUrements in 222Rn monitoring

Height [m]

(2]

Count rate BEW [cps]
=)

o

o
o

Height [m]
764 1512 2028 2423 2743 3012 3448

Count rates linear regression lines allow for discriminating
,,1 cosmic from experimental setup radioactivity background,
i assessing background count rates during AGRS regional

ok L oo surveys and determining Minimum Detectable Abundances

Count rate CEW [cps]

Count rate TEW [cps]
@

>
bEY 3
w9

Baldoncini M., Alberi M., Bottardi C., Mantovani F., Minty B., Raptis K., Strati V. Airborne gamma-ray spectroscopy for modeling cosmic radiation
and effective dose in the lower atmosphere. (2017) IEEE Transactions on Geoscience and Remote Sensing

Baldoncini M., Alberi M., Bottardi C., Mantovani F., Minty B., Raptis K., Strati V. Exploring atmospheric radon with airborne gamma-ray
spectroscopy (2017). Atmospheric Environment



