

Atmospheric Radon in a marine environment: a novel approach based on Airborne Gamma-Ray Spectroscopy (AGRS)

2500 3000

Marica Baldoncini^{a,b}, Matteo Albéri^{a,b}, Carlo Bottardi^{b,c}, Brian Minty^d, Kassandra G. C. Raptis^{a,b}, Virginia Strati^{b,c}, Fabio Mantovani^{b,c}

alNFN, Legnaro National Laboratories, Italy; begartment of Physics and Earth Sciences, University of Ferrara, Italy; clNFN, Ferrara Section, Italy; dMinty Geophysics, Australia.

European Geosciences Union General Assembly, 8 - 13 April 2018, Vienna, Austria

PI be

Please contact me: baldoncini@fe.infn.it

Scientific motivations and goal

- ²²²Rn gas is responsible for ~43% of global human exposure to ionizing radiation
- ²²²Rn is an atmospheric tracer used as a proxy for climate and pollution studies
- ²²²Rn is a severe source of background in Airborne Gamma-Ray Spectroscopy (AGRS)
- The marine environment is ideal for tracing atmospheric ²²²Rn via AGRS
- 222Rn is a noise in monitoring for spent nuclear fuels and radioactive wastes carried in ships

The goal of the study is to assess ²²²Rn vertical profile by means of dedicated offshore AGRS surveys

Experimental setup

AGRS spectra are acquired with a 16 liter Nal detector

Flight altitude is measured with 7 different altimetric

sensors

The Radgyro is

5

The count rate in the BEW is the sum of:

- cosmic component, exponentially increasing with flight height
- constant component, due to the radioactivity of the aircraft and of the equipment
- atmospheric ²²²Rn altitude dependent component, reflecting ²²²Rn distribution in the atmosphere

Theoretical model

0 1 2 3 4 5 km

Atmospheric ²²²Rn count rate is modeled on the basis of:

- ²²²Rn concentration vertical profile.
 Constant for height < s and 0
 for height > s
- Mean free path of ²¹⁴Bi photons. The AGRS detector field of view is approximable to a sphere of r ~400 m

The atmospheric ²²²Rn count rate

■ is equal to C at sea level and at height s, corresponding to the half sphere field of view

Acquisition time [s]

- saturates to 2C, when the full sphere field of view is enclosed within the ²²²Rn layer
- exponentially approaches 0 for flight altitudes greater than s

6

- The new model, accounting for the presence of a homogeneous ²²²Rn layer, provides a better fit compared to the ²²²Rn free standard model
- The best fit curve models the count rate due to a ²²²Rn layer having a_{Rn} = (0.96 ± 0.07) Bq/m³ homogeneously distributed up to s = (1318 ± 22) m
- The mean ²²²Rn concentration and mixing layer depth are in agreement with literature data: a_{Rn}~1 Bq/m³, s ~1500 m

Results [Sdo] A) 15 0 0 5 0 0 5 0 1000 1500

