

Improving the Representation of Flow in Complex Terrain by Local-Regional Scale Model Coupling

Ulrich Uhrner¹, Martin Steiner¹ and Rafael Reifeltshammer¹

¹ Institute of Internal Combustion Engines and Thermodynamics, Graz University of Technology, Graz, Austria

Background & Objectives

- Low wind speed conditions & frequent inversions frequently encountered in alpine valleys & basins, may cause → poor dispersion conditions → high air pollution levels
- Representation of wind by NWP and regional models is poor at stably stratified conditions as reported by Miglietta et al., 2012, Jiminez & Dudhia, 2012, Sandhu et al., 2013 a wind speed (WS) bias was reported
- PMinter Uhrner et al., 2014 WRF overestimated WS by factor 2 to 2.5 in basins winter period in January 2010 (characterized by high air pollution levels)
- Local scale model GRAMM (GRAz Mesoscale Model, Almbauer et al., 2000)
 captures low wind speed conditions well however initialization & boundary conditions challenging

- Improve representation of flow in complex terrain by nesting the local scale model GRAMM within regional WRF
 - Nesting large & small local scale high resolution domain (∆x,y 100 m to 250 m) January 2010

Methodology & Set-Up

- WRF used with multiple nesting strategy: D01 (mainland Europe $\Delta x,y \sim 25$ km, D02 (see red rectangle see Fig. right) $\Delta x,y \sim 5$ km, D03 $\Delta x,y \sim 1$ km (green rectangle)
- ECMWF ERA-Interim re-analysis → boundary conditions WRF D01 January 01 to 31, 2010
- Regional/Local coupling interface developed to interpolate WRF variables on GRAMM grid for initialisation & boundary conditions
- Additional initialisation scheme for hybrid WRF-GRAMM/multiple observational surface wind forcing & temperature correction scheme developed
- Coupled GRAMM domains 10 km x 15 km & 19.2 km x 13.8 km Δx ,y 100 m & 150 m and 53 km x 83 km Δx ,y 250 m orange rectangle

Overview of numerical experiments - approaches:

- APP1: WRF computed D03 flow, Θ , $q \rightarrow$ initialisation/b.c.'s GRAMM
- APP2: Adjustment of biased WRF simulated flow, by scaling WRF interpolated *u*, *v* using monitored 10 m winds
- APP3: conditional hybrid model forcing 10 m wind and 2 m temperature measurements used to initialize u, v, bottom up with weight function in case of significant mismatch, adjustment of WRF T-profile to correct for surface inversions

Results

Summary

Table: R² and slope m for monitored vs simulated wind speed (WS) for different experiments

		APP1 R ² WS	APP1 m-WS	APP2 R ² WS	APP2 m WS	APP3 R ² WS	APP3 m WS
		11/25 days	11 days	11/25 days	11 days	11/25 days	25 days
	MB-T L	0.29 / 0.13	1.49	0.48 / 0.32	0.86	0.70 / 0.61	0.77
	LB-W L	0.25 / 0.10	1.09	0.41 / 0.31	0.84	0.66 / 0.60	0.68
	G-NL	0.52 / 0.35	1.35	0.65 / 0.51	0.99	0.84 / 0.72	0.65
	Arnf L	0.03 / 0.03	0.73	0.39 / 0.53	0.36	0.64 / 0.66	0.64
	MB-T S	0.31 / 0.13	1.56	_	-	0.55 / 0.55	0.89
	LB-W S	0.20 / 0.07	1.20	_	-	0.34 / 0.27	0.68

- WRF simulations $\Delta x,y$ 1 km significantly overestimated wind speeds in basins/valleys
- WRF-GRAMM nesting reduced significantly momentum, higher reduction in the large GRAMM domain, improved representation wind direction
- APP1 (forecasts possible) overestimated wind speed fair results wind direction
- APP2 (scaling, analysis mode) good results for wind speed except hill station Arnfels, poor-fair results wind direction
- APP3 (hybrid forcing, analysis mode) good results for wind speed & wind direction underestimation wind speeds (by 23 to 36%)

V&U traffic & environment, IVT; Graz University of Technology; Inffeldgasse 25c, 8010 Graz - Tel: +43 316 873-30220 - Fax: +43 316 873-30202 - e-mail: uhrner@ivt.tugraz.at