

¹ School of Engineering, Faculty of Engineering and Built Environment, the University of Newcastle, Australia, ² DTU Space, Technical University of Denmark **E-mail:** Fardin.Seifi@uon.edu.au, Xiaoli.Deng@newcastle.edu.au and oa@space.dtu.dk

even more complicated [2].

to better performance of the new model in comparison to the base model, FES2014.

latitudes from -10° to -26° and longitudes from 142° to 156°.

- \succ FES2014 has a spatial resolution of 3.75' * 3.75'.
- more influential tidal constituents not included in FES2014 (e.g. OO1, SO1 and MK3).

- \succ The tidal wavelength is related to bathymetry through [3]:

$$I = (gd)^{1/2}T$$

- \blacktriangleright The gridding method has to account for the variations in bathymetry over this area.
- formulated as [4]:

$$C(r,\Lambda) = C_0 \left(1 + \frac{r}{\alpha(\Lambda)}\right) e^{\left(-r/\alpha(\Lambda)\right)}$$
(2)

obtained.

A new empirical tidal model for the Great Barrier Reef, Australia

Fardin Seifi¹, Xiaoli Deng¹ and Ole Baltazar Andersen²

Fig. 4 Positive numbers stand for the better performance of New Model with respect to FES2014 and negative values vice versa.

	6. NE				EW MO	
ore	Five recent global models are taken to compare to co					
are interpolated over satellite along track						
	Table 5The mean RMS	s of SLARs over	Sentinel 3A ale	ong track locati	ions in differe	
	zones. Values ar Model	e in cm. Coastal Zone	Shelf Zone	Ocean Zone	Challenging	
oserved by satellites, Table1 and Fig.1, are	New Model	13.67	10.3	7.8	11.8	
of sea level anomaly residuals (SLARs) are	FES2012	10.6	8.00	7.75	9.07	
	TPX08	14.42	9.65	7.96	13.03	
	DTU10	13.41	9.7	7.92	12.6	
od to extract tidal corrections of 8 major e corrections are applied to corresponding	EOT 4.10 EOT11a	26.5	12.07	9.84	24.5	
OO1, SO1 and MK3 using harmonic analysis.	Togethe model st	er with TP tand closel	X08 and y behind	DTU10 tl FES2012	he new	
lar grid of 2 ^{**} 2 [*] using LSC method.						
E MODEL S2014 and the new model. The RMS of the residuals and possible unmodelled n Fig. 3.	This model compares more favourable FES2 over coastal and shelf zone in with a more spatial resolution.					
	From Fig. 5, it can be said that the slightly better performance of FES2012 compared to the new model still resides over challenging z					
	To apple perform 3A alon approact	y a Weigh less effici g track loc h.	ted Mean ent than v ations wl	is method when a L hen Weigl	7 in order SC appro hted Mea	
0 10 20 30 40	 Adding coastal z 	three mor zone about	e shallow t ~ 1cm.	water co	onstituen	
Fig. 3 The geographical view of the RMSs over Sentinel 3A along track locations for FES2014 (left) and New Model (Right)	Adding tidal constant corrections for the 8 ma more than ~ 3cm and ~1cm of mean RMS ov					
es a comparative idea about how the new with respect to the base model. The ovement over challenging zone with highly ymetry is more than 50%.	Due to atmospheric effects the SLARs of Second obviously the performance of the models and what has been achieved in this study.					
	A massive 50% improvement of the new model of the steps taken to improve FES2					
nean KNISs over challenging zone in cmModelFES2014New Model					0	
ean zone the performance of the two models lar with FES2014 showing slightly better over a number of Sentinel 3A along track	 [1] Great E Retrieved f [2] Bode I modelling. [3] Anderse Journal of [4] Anderse Research, 	Barrier Ree from: http: L., Mason Pro Ocea en O.B. (1 Geophysic en O. B, G 100, 25249	ef Marine //www.gl L.B, Mid <i>nography</i> 999). Sha cal Resea Hobal Oc 9 - 25259	Park Aut ormpa.go dleton J.H y, 40, 285 allow wat <i>rch, 104</i> , ean Tides	8. hority, A v.au/abou H. (1997) -324. er tides i 29-41. from EF	

MODEL VS OTHER MODELS

Fig. 5 Performance of the new model in tidal height prediction with respect to (a) DTU10, (b) TPX08, (c) FES2012, (d) GOT 4.10 and (e) EOT11a.

enging zone.

7. DISCUSSION

n order to spread tidal constants over a regular grid leads the model to C approach is used. In a numerical sense the mean RMSs over Sentinelted Means approach is used will be ~4 cm more than that of a LSC

stituents, i.e. MK3, OO1 and SO1, improves the mean RMSs over

the 8 major constituents improve the prediction ability of the new model RMS over costal and shelf zones respectively.

s of Sentinel-3A observations are not merely tidal residuals therefore, lels and certainly new model in tidal height prediction is even better than

ew model compared to FES2014 over challenging zone, implies on the ve FES2014.

8. REFERENCES

ority, Australian Government, 2016. Facts about the Great Barrier Reef, au/about-the-reef/facts-about-the-great-barrier-reef (1997). Reef parameterisation schemes with applications to tidal

tides in the northwest European shelf region from Topex Altimetry.

from ERS 1 and TOPEX/Poseidon altimetry, Journal of Geophysical