

Emel Zeray Öztürk¹ (emelzeray@selcuk.edu.tr), Walyeldeen Godah² (walyeldeen.godah@igik.edu.pl), Ramazan Alpay Abbak¹ (aabbak@selcuk.edu.tr) ¹ Selçuk University, Geomatics Eng. Dept., Konya Turkey, ² Institute of Geodesy and Cartography, Warsaw, Poland

Introduction

Since the launch the Gravity Recovery and Climate Experiment (GRACE) satellite mission in March 2002, several releases (RL), i.e. RL01, RL02, RL03, RL04, and RL05, of GRACE-based GGMs have been developed. These releases generated by from the official GRACE Science Data System, i.e. CSR, GFZ and JPL, centres are gradually getting better results. GRACE-based GGMs are highly affected by the noise caused by various reasons during the acquisition of data. Especially, the orbital plane followed by GRACE satellites is one of the most common causes of the noise. An appropriate filtering method is essentially needed to minimize these noise. It should be noted that, applying such filter, may led to the loss of some of the mass variations signal, and decrease of the spatial resolution. Thus, the aforementioned appropriate filter should be chosen as a compromise between reducing noise, keeping signal and the spatial resolution. Recent studies revealed the suitability of de-correlation filters to reduce the noise included in GRACE solutions.

The main aim of this contribution is to study the performance of de-correlation filters (DDK1—DDK8) applied to reduce the noise in RL05 GRACEbased GGMs as well as to select the most suitable GRACE-based GGM time series to estimate mass variations within the Earth system in Turkey.

Materials & Methods

Evaluation of RL05 GRACE Based Global Geopotential Models on a Regional Scale: A case study of Turkey

Attainability of RL05 GRACE-based GGMs from the CSR, GFZ, and JPL centers

2014

2013

2011

201

NASA JPL

GFZ Helmholtz-Zentrum CSR 1 2 3 4 5 6 7 8 9 10 11 12 FORMULAE $EWT^{(GRACE)} = \frac{R \cdot \rho_{av}}{2} \sum_{n=1}^{N_{max}} \left(\frac{2n+1}{1+k}\right) \sum_{n=1}^{n} \overline{Y}_{nm}(\varphi, \lambda)$ $\Delta EWT_{i}^{(\text{GRACE})} = EWT_{i}^{(\text{GRACE})} - EWT^{(\text{GRACE})}_{\text{mean}}$ $\Delta EWT_{i}^{(WGHM)} = EWT_{i}^{(WGHM)} - EWT^{(WGHM)}$ $d\Delta EWT_i = \Delta EWT_i^{(WGHM)} - \Delta EWT_i^{(GRACE)}$

Mascons number #:802, #:803, #:804, #:805 and #:806 were used in the investigation

Results

Time series of ΔEWT obtained at points 1,3,5,8 using CSR, GFZ and JPL GRACE-based GGMs and DDK1-DDK8 filters

Statistics of the differences between $\Delta EWT^{(WGHM)}$ and $\Delta EWT^{(GRACE)}$

Statistics [m]		Min	Max	Mean	Std	Max-min		Statistics [m]		Min	Max	Mean	Std	Max-min
A1	CSR	-0.145	0.061	-0.045	0.045	0.206		CSR	0.173	0.077	-0.030	0.063	0.250	
	GFZ	-0.150	0.038	-0.061	0.043	0.188		A7	GFZ	-0.177	0.057	-0.046	0.060	0.234
	JPL	-0.143	0.060	-0.048	0.049	0.203			JPL	-0.172	0.076	-0.033	0.068	0.248
A2	CSR	-0.079	0.080	0.005	0.038	0.159	A8	CSR	-0.150	0.111	-0.016	0.056	0.261	
	GFZ	-0.104	0.049	-0.019	0.036	0.153		GFZ	-0.166	0.084	-0.040	0.055	0.250	
	JPL	-0.078	0.083	0.003	0.041	0.162		JPL	-0.155	0.115	-0.018	0.060	0.270	
A3	CSR	-0.104	0.077	-0.015	0.042	0.181	A9	CSR	-0.080	0.168	0.049	0.060	0.248	
	GFZ	-0.123	0.039	-0.047	0.039	0.162		GFZ	-0.103	0.122	0.018	0.055	0.226	
	JPL	-0.100	0.085	-0.016	0.045	0.185		JPL	-0.084	0.185	0.049	0.063	0.269	
A4	CSR	-0.100	0.564	0.119	0.173	0.664	A10	CSR	-0.150	0.123	-0.015	0.068	0.273	
	GFZ	-0.124	0.527	0.084	0.170	0.651		GFZ	-0.177	0.082	-0.050	0.064	0.258	
	JPL	-0.103	0.553	0.119	0.170	0.655		JPL	-0.152	0.127	-0.016	0.072	0.280	
A5	CSR	-0.129	0.138	0.007	0.062	0.266	A11	CSR	-0.152	0.122	0.006	0.069	0.274	
	GFZ	-0.155	0.096	-0.028	0.057	0.252		GFZ	-0.178	0.082	-0.029	0.066	0.259	
	JPL	-0.124	0.139	0.005	0.065	0.263		JPL	-0.146	0.124	0.003	0.072	0.270	
A6	CSR	-0.158	0.109	-0.010	0.064	0.267	A12	CSR	-0.133	0.149	0.025	0.062	0.282	
	GFZ	-0.181	0.073	-0.041	0.058	0.254		GFZ	-0.156	0.106	-0.005	0.057	0.262	
	JPL	-0.154	0.107	-0.014	0.067	0.261		JPL	-0.144	0.134	0.020	0.064	0.278	

From the results in the time series graphs, it can be clearly seen that the mass variations are at the highest levels in spring in April and May, and at the lowest levels in August and September. These results show that the mass variations in the study area are also confirmed by the hydrological data.

As it can be seen from statistics of the differences, RL05 GRACE-based GGMs obtained from GFZ center are more convenient than the RL05 GRACE-based GGMs obtained from other JPL and CSR Centers. In this case, it can be highly recommended to utilize RL05 GRACE-based GGMs developed by GFZ centre in order to determine mass changes within the Earth System in Turkey compared to other CSR and JPL-based GGMs.

Conclusion

The results obtained indicate that DDK1 and DDK2 filters are more suitable to reduce the noise contained in RL05 GRACE-based GGMs than DDK3-DDK8 filters as well as more effective to retrieve mass variations with the Earth system in the study area. The results of the comparison between equivalent water thickness variations also demonstrate the superiority of RL05 GRACE-based GGMs developed by GFZ centre to estimate temporal mass variations, over other GGM time series analyzed.

Acknowledgement

This paper was funded by Selcuk University Academic Staff Training Program (ÖYP) Coordination Unit, Project No. 2016-OYP-043, "Analysis of Mass Flux with Mascon Approach in Turkey". The data used in this study were made freely avaliable by the Center for Space Research, Jet Propulsion Laboratory and GeoForchung Zentrum. Hannes Müller Schmied is acknowledged for WGHM data.

