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M ogical   of the graphitic rocks represents the st  g   (Chl+Ab+Mu+Phg+Gr+Qz±Tu±Zr). The chlorite geothermometer and the 
40 39presence of phengite in the metasedimentary, units as well as Ar/ Ar ages on metavolcanic and metaultramafic rocks indicate that the Granjeno Schist was metamorphosed 

under sub-greenschist to greenschist facies with temperatures ranging from 250-345°C with 2.5 kbar during Carboniferous time (330±30 Ma; Torres et al., 2016). Low I /I  ratio D G

vales of 0.54 to 2.30 are according to low grade metamorphism. According with quantitative empirical metamorphic thermometer using Raman spectroscopy data, the 
graphitization temperature ranges from 320°C to 430 °C

ineral  assemblages  lowe  part of reenschist facies

Raman spectra of graphite were measured by an Thermo Scientific DXR (FSU Jena, Germany) 
with a 532 nm laser. The laser (2.0 mW) was focused on the samples with a 20× objective. The 
scattered light was dispersed with a 900 g mm- 1 grating. The combination of the 20× objective 
and 532 nm laser wavelength produced a laser spot size of approximately 1.3 µm in diameter. The 
spectra were calibrated using the Raman band from a silicon wafer prior to each set of 
measurements.  For each spectrum, the area ratio was calculated (R2 = A /(A  + A  + A ), where D1 G D1 D2

A is the area of the peak, G band is the main high-frequency band of graphite, and D1 and D2 
bands are defect bands observed in the first-order Raman spectrum of graphite) (Wopenka and 
Pasteris, 1993; Beyssac et al.,2002).

All the acquired spectra show typical G, D1 and D2 bands, respectively at 1580, 1350 and 1620 
cm-1 

Fig. 2 a) Graphitic schist, b) quartz veins and crenulations structures in the graphitic schist, 
c) folded foliation in graphitic schist. d) graphitic schist interbedded with psammitic schist,

Fig. 3 a) Lepidoblastic texture with muscovite, graphite, quartz and plagioclase mineral phases,  
b) porphyrolepidoblastic with albite porphydoblast,  c) lepidoblastic texture with quartz bands 
and graphite, d) graphite with crenulation cleavage. 

Fig. 5 a) T °C vs X (chlorite content) based c

on Cathelineau, 1988 (Torres Sánchez 
2015), b) Phengite P-T diagram with Si pfu 
isoplets based on Massonne & Szpurka, 
1997 (Torres Sánchez 2015), c) Comparison 
of I /I  vs A /A  intensities ratios of the D G D G

Raman peaks based on Marshall et al., 
2012

Fig. 5 Subduction model 
metamorphism during Pennsylvanian to Permian time 
(modified from Deschamps et al., 2013 and Torres Sánchez et 
al., 2017). MORB: mid-ocean ridge, Mag: magnetite.

 for the Granjeno Schist 

The Sierra Madre Oriental is a long range that resulted from the deformation of Mesozoic rocks 
and its basement complex. Both were uplifted, shortened and transported northeastward 
forming a fold and thrust belt during the Laramide orogeny. Vestiges of the Mexican Paleozoic 
continental configuration are present in the metamorphic basement of the Sierra Madre 
Oriental, in northeastern Mexico. This basement unit crops out in eroded cores of laramidic 
structures as the Huizachal-Peregrina Anticlinorium (Novillo, Peregrina and Caballeros Canyons), 
Miquihuana and Bustamante Uplifts in Tamaulipas and in the Aramberri Uplift in Nuevo Leon 
(Fig.1). The unit known as Granjeno Schist comprises intercalations of metamorphic rocks with 
both sedimentary (psammite, pelite, turbidite, conglomerate, marble, black shale) and volcanic 
(tuff, lava flows, pillow lava and ultramafic bodies) protoliths (Torres Sánchez et al., 2016). 

Several studies have discussed the provenance and metamorphism of the Granjeno Schist, but 
no data concernig the graphitization degree have been studied.

Organic matter preserved in the sedimentary rocks can be transformed into crystalline graphite 
due to metamorphism, process known as graphitization. (Bonijoly et al., 1982; Wopenka and 
Pasteris, 1993; Beyssac et al., 2002, 2003; Buseck and Beyssac, 2014). It is generally accepted that 
the degree of graphite crystallinity, or its structural order, it is determined mainly by the 
maximum temperature conditions experienced by the host rocks, whereas lithostatic pressure 
and shear strain are considered to have only minor influence on graphitization (Bonijoly et al., 
1982; Wopenka and Pasteris, 1993; Bustin et al., 1995). Therefore, graphite crystallinity has been 
calibrated as an indicator of the peak temperatures reached during progressive metamorphism 
(Beyssac et al., 2002; Reitmeijer and McKinnon, 1985)

With the application of fieldwork, petrographic and Raman spectroscopy techniques, this work  
aims to understand the highest metamorphic degree that ocurred during the evolution of the 
Granjeno Schist. This can provide a better control on the conditions of the tectonic processes 
related with Pangea amalgamation.

The importance of this kind of studies it is that they are founded on descriptive and analytical 
analysis which allow to understand the geological process that took place in the ancient Earth. 
Honouring James Hutton, we aim to reveal geological past process throught the understanding of 
actual natural phenomena.    

The graphitic schist consists of fine-grained, homogeneous, grayish to black layers (2 to 5 m thickness) with NW-SE-
trending foliation (Fig. 2a) and crenulation structures (Figs. 2b and c). Quartz veins are commonly observed also  
intruding parallel to the bedding, forming isoclinal folds. The graphitic schist is stratigraphically interlayered with 
pelitic and psammitic schist (Fig. 2c). 

The graphitic schist it is mainly composed of the metamorphic minerals white mica, chlorite, quartz, feldspar, 
graphite and accesory minerals as tourmaline and circon (Figs. 3a-d). The rocks have lepidoblastic texture with 
micaceous, graphitic and quartz-plagioclase (0.1 to 0.5 mm) sectors (Fig. 3a). It is also recognized 
porphyrolepidoblastic and lepidoporphyroblastic textures where the porphyroblasts consists of subhedral to 
euhedral albite (1 mm) commonly surrounded by acicular muscovite, chlorite, graphite, and sutured quartz bands 
(Fig. 3b).The feldspar porphyroblasts contain graphitic inclusions defining a foliation that is oblique to the dominant 
metamorphic foliation (Fig. 3b). Folds of the graphitic foliation are preserved locally in the feldspar porphyroblasts. 
Graphitic rocks develop crenulation cleavage indicating refolding of the main foliation (Fig. 3d).  

1) Introduction 2) Macroscopic and petrographic composition

Fig.1  
León and Tamaulipas states (after Barboza et al., 2010)

 Study area and geological map of the Sierra Madre Oriental, Nuevo 

The graphitic rocks in the Granjeno Schist are pervasive throughout the whole unit, indicating a carbon-rich depositional environment in which a significant organic material was preserved. This environment could be related with the 
peripheria of southwest Gondwana and the deposition of the carbon rich material took place prior to the Granjeno Schist metamorphism. Lithospheric mantle slivers juxtaposed during the metamorphism of the Granjeno Schist, this is 
suggested by tectonic contact of the serpentinite lenses with the metavolcanic and metasedimentary rocks. The metamorphism of the Granjeno Schist represents the latest tectonics events during the closure of the Rheic Ocean and 
along the paleo-Pacific margin after the closure of Pangea.
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5) Conclusions

b)

c)

Fig. 4 Raman spectra and example of the graphite analyzed sample from the Granjeno schist
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