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e Objectives:
Through atmospheric signals,
e constrain ground model
(seismic events)
e constrain sources and/or
constrain atmospheric model
(atmospheric events)
e But why?
e Planetary applications (e.g. Venus).
e Infrasound monitoring (cf. CTBTO).
e How: balloon sensors (vs. ground).
X more difficult to deploy,

v/ more versatile (smaller, more mobile),
v in situ probe.
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Figure 1: Top: ISAE balloon sensors
(credit: ISAE). Bottom: CTBTO 1549
ground sensor (credit: CTBTO).
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Figure 2: Left to right: seismic hammer, tethered balloon, hot air balloon.
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e Head infra-sounds’ amplitudes are conserved with altitude.
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e Amplitudes of infrasounds created by surface waves:
e are conserved with distance,
e do not depend on the source mechanism (away from source).
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e Amplitudes laterally decrease slower at z = 30 km than at ground.

e Differential time (at z = 30 km) can constrain explosions’ altitudes.
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e Amplitudes laterally decrease slower at z = 30 km than at ground.
e Differential time (at z = 30 km) can constrain explosions’ altitudes.
e Wind is an unknown, but balloon with GPS = wind probe.
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Recordings

Longer Range: . . . - -

Aimospherc e Stratospheric monitoring (cf. atmospheric explosions):

. e Stratospheric barograms study can help constrain:

e explosions’ altitudes,
e atmospheric parameters (if source is known).
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2) Our simulations can help design new experiments.
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Limitations, and Future Work

e Limitations:
e Simulations are 2D:

® geometric attenuation underestimated,
® but in some cases re-scalable in post-process.
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Limitations, and Future Work

Limitations:
e Simulations are 2D:

® geometric attenuation underestimated,
® but in some cases re-scalable in post-process.

Ouvertures / Future work:
e 3D simulations:
e with more complex sources
(e.g. ocean microbaroms, ...),
e with more complex topography
(e.g. mountain ranges, ...).
e Infer sensitivity of observations to atmospheric models
= prepare inversion.
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