Numerical simulations of acoustic and infrasonic waves in the coupled ground-atmosphere system: synergy between balloon and ground sensors

Léo Martire¹, Q. Brissaud², R. F. Garcia¹, R. Martin³

¹ISAE (DEOS-SSPA), Toulouse, France, ²Caltech, Pasadena, USA, ³OMP-GET, Toulouse, France

EGU - Friday, 13th of April, 2018

Léo Martire

SPECFEM-D

Equations Numerical Metho

3 Applicat

Short Range: Seismic

Hammer

Recording

Long Range:

Earthqual

Overview

Longer Rang Atmospheric

Overview

Recording

Conclusions

General Conclusion Limitations, and

References

Introduction: Scientific Problematic

- Objectives: Through atmospheric signals,
 - constrain ground model (seismic events)
 - constrain sources and/or constrain atmospheric model (atmospheric events)

Léo Martire

SPECFEM-D

Equations Numerical Metho

3 Applicat

Short Range: Seism

Overview

Long Rang

Earthqua

Overview

Longer Range Atmospheric

Overview

Recordings

Conclusions

General Conclusion Limitations, and Future Work

References

Introduction: Scientific Problematic

Objectives:

Through atmospheric signals,

- constrain ground model (seismic events)
- constrain sources and/or constrain atmospheric model (atmospheric events)
- But why?
 - Planetary applications (e.g. Venus).
 - Infrasound monitoring (cf. CTBTO).

Léo Martire

SPECFEM-D

Equations Numerical Method

Cases

Short Range: Seism Hammer

Decording

Long Rang

Earthqua

Overview

Longer Rang

Overview

General Conclusion
Limitations, and
Future Work

References

Introduction: Scientific Problematic

- Objectives: Through atmospheric signals,
 - constrain ground model (seismic events)
 - constrain sources and/or constrain atmospheric model (atmospheric events)
- But why?
 - Planetary applications (e.g. Venus).
 - Infrasound monitoring (cf. CTBTO).
- How: balloon sensors (vs. ground).
 - x more difficult to deploy,
 - ✓ more versatile (smaller, more mobile),
 - ✓ in situ probe.

Figure 1: Top: ISAE balloon sensors (credit: ISAE). Bottom: CTBTO IS49 ground sensor (credit: CTBTO).

Overview

Léo Martire

5FECFEIVI-DG

Equations Numerical Metho

3 Application

Short Range: Seismic

Overview

Recording

Long Rang

Overviev

Recordings Longer Range

Atmospheric

Overview

r tecor amb

General Conclusi Limitations, and

References

cc •

1 Simulation software: SPECFEM2D-DG

Equations Numerical Method

2 3 Application Cases

Short Range: Seismic Hammer

Long Range: Earthquake

Longer Range: Atmospheric explosions

3 Conclusions

General Conclusions Limitations, and Future Work

4 References

Overview

Léo Martire

SPECFEM-DG

Numerical Method

3 Application Cases

Short Range: Seismic

Hammer Overview

Recordings Long Range:

Earthquak

Overview

Longer Range Atmospheric

Overviev

_ . . .

General Conclusio Limitations, and

eferences

1 Simulation software: SPECFEM2D-DG
Equations
Numerical Method

2 3 Application Cases

Short Range: Seismic Hammer

Longer Range: Atmospheric e

Longer Range. Atmospheric explosion

3 Conclusions

General Conclusions
Limitations, and Future Work

4 References

Léo Martire

SPECFEIVI-DG

Equations Numerical Method

0.4 !! .!

Cases

Short Range: Seismic

Overview

Recordings Long Range:

Earthqua

Overvie

Recordings Longer Range:

explosions

Recording

Conclusion

General Conclusion Limitations, and

References

Equations

 Ω^f , fluid (atmosphere) wind, attenuation interface (mechanical coupling) Ω^S , solid (ground)

Base: SPECFEM-DG 2D ([Brissaud et al., 2017]).

attenuation

Léo Martire

SPECFEM-DO

Equations Numerical Method

3 Application

Short Range: Seis

Hammer

Overview

Recording

Earthqua

Overvie

Longer Range Atmospheric

Overview

Conclusion

General Conclusio Limitations, and Future Work

References

Equations

 Ω^f , fluid (atmosphere)

wind, attenuation

interface (mechanical coupling)

 Ω^s , solid (ground)

attenuation

- Base: SPECFEM-DG 2D ([Brissaud et al., 2017]).
- System:

Navier-Stokes equations elastodynamics equations mechanical coupling absorbing boundary conditions periodic boundary conditions in fluid domain, in solid domain, on fluid/solid interface, on top/bottom boundaries, on left/right boundaries.

Léo Martire

3FECFEIVI-DG

Numerical Method

3 Application

Short Range: Seismi

Hammer

Recordings Long Range:

Earthqua

Overviev

Longer Range:

explosions

Recording

Conclusion

General Conclusion

Reference

Numerical Method

- Discretisation: weak formulations and spectral finite element method.
 - Continuous in solid domain ([Komatitsch and Vilotte, 1998], [Tromp et al., 2008]).
 - Discontinuous in fluid domain ([Brissaud et al., 2017]).

Léo Martire

SPECFEIVI-DG

Numerical Method

3 Application Cases

Short Range: Seism Hammer

Overview Recordings

Long Ran

Overview

D----li-

Longer Range Atmospheric

explosions

Recordings

General Conclusion

Limitations, and Future Work

References

Numerical Method

- Discretisation: weak formulations and spectral finite element method.
 - Continuous in solid domain ([Komatitsch and Vilotte, 1998], [Tromp et al., 2008]).
 - Discontinuous in fluid domain ([Brissaud et al., 2017]).
- **Explicit** time integration scheme (fifth order strong stability Runge-Kutta).

Léo Martire

SPECFEM-DO

Numerical Method

3 Application

Short Range: Seism

Overview

Recording

Earthqua

Overview

Recording

Atmospheric

Overview

Recordings

General Conclusi Limitations, and

Reference

Numerical Method

- Discretisation: weak formulations and spectral finite element method.
 - Continuous in solid domain ([Komatitsch and Vilotte, 1998], [Tromp et al., 2008]).
 - Discontinuous in fluid domain ([Brissaud et al., 2017]).
- **Explicit** time integration scheme (fifth order strong stability Runge-Kutta).
- Parallel computing: MPI (1 CPU \leftrightarrow 1 subset of the mesh).

Léo Martire

Equations .

Numerical Metho

3 Application Cases

Short Range: Seismic

Overview

Long Range:

Earthqua

Overview

Recordin

Atmospheric

Overviev

Canalusian

General Conclusion Limitations, and

eferences

(C)

Overview

1) Simulation software: SPECFEM2D-DG
Equations
Numerical Method

2 3 Application Cases

Short Range: Seismic Hammer

Long Range: Earthquake

Longer Range: Atmospheric explosions

3 Conclusions

General Conclusions
Limitations, and Future Work

4 References

Léo Martire

SPECEEM-DO

Equations
Numerical Method

3 Applicati

Short Range: Seismic

Overview

Overview Recordings Long Range:

artnqua

Recordings
Longer Range:

Overview

. . .

General Conclusion Limitations, and

Reference

© <u>()</u>

Seismic Hammer - Overview

• 2017 experiment, collaboration with JPL [Krishnamoorthy et al., 2018].

Figure 2: Left to right: seismic hammer, tethered balloon, hot air balloon.

Léo Martire

SPECFEM-DG

Equations
Numerical Method

3 Applicatio Cases

Short Range: Seism

Overview

Recording

Long Range:

Overvier

Decertie

Longer Range: Atmospheric

explosions Overview

Conclusion

General Conclusi Limitations, and Future Work

References

Seismic Hammer - Overview

- 2017 experiment, collaboration with JPL [Krishnamoorthy et al., 2018].
- Ground models: 2 types (same bedrock).
 - 1 "soft" (4 layers, low seismic velocities),
 - 1 "hard" (1 layer, high seismic velocities).

Léo Martire

SPECFEM-DG

Equations
Numerical Method

3 Application Cases

Short Range: Seism

Overview

Recording

Long Range:

Overviev

Pecordir

Longer Rang Atmospheric

explosions Overview

Conclusio

General Conclusi Limitations, and

Reference

Seismic Hammer - Overview

- 2017 experiment, collaboration with JPL [Krishnamoorthy et al., 2018].
- Ground models: 2 types (same bedrock).
 - 1 "soft" (4 layers, low seismic velocities),
 - 1 "hard" (1 layer, high seismic velocities).

• Atmospheric model: isothermal.

Léo Martire

SPECFEM-DG

Equations
Numerical Method

3 Application Cases

Short Range: Seism

Overview

Recording

Earthqua

Overviev

Recordir

Longer Rang Atmospheric

explosions Overview

Recordii

Conclusion

General Conclusio Limitations, and Future Work

Reference

Seismic Hammer - Overview

- 2017 experiment, collaboration with JPL [Krishnamoorthy et al., 2018].
- Ground models: 2 types (same bedrock).
 - 1 "soft" (4 layers, low seismic velocities),
 - 1 "hard" (1 layer, high seismic velocities).

- Atmospheric model: isothermal.
- Source: vertical point force in the solid domain.

Léo Martire

SPECFEM-DO

Equations
Numerical Method

3 Application

Short Range: Seismic

Overview

Recordings

Long Range:

Overview

Recordings

Longer Range: Atmospheric

Overview

General Conclusion Limitations, and

D (

© ()

Seismic Hammer - 1% Saturated Snapshots

• t = 0.6 s:

Léo Martire

Numerical Method

Short Range: Seismic

Overview

Recordings

Long Range:

Overview

Recordings Longer Range:

Seismic Hammer - 1% Saturated Snapshots

Léo Martire

SPECFEM-D

Equations
Numerical Method

3 Application

Short Range: Seismic

Overview

Recording

Long Range:

Commis

Overvie

Longer Range:

explosions

Recording

Conclusions

General Conclusion Limitations, and Future Work

Reference

Seismic Hammer - 1% Saturated Snapshots

• Low-amplitude infrasounds, from P diffracted waves.

Léo Martire

SPECFEM-DO

Equations
Numerical Method

3 Applicati

Short Range: Seism

Overview

Recordin

Long Range:

Overvies

Overvie

Recordings
Longer Range
Atmospheric

Overview

Recordings

General Conclus Limitations, and

Reference

Seismic Hammer - 1% Saturated Snapshots

• t = 1.0 s:

- Low-amplitude infrasounds, from P diffracted waves.
- Soft soil:
 - Strong impact zone oscillations (multiple P-wave reflections)
 ⇒ epicentre infrasounds (at ground resonance frequency).
 - 2 $v_s < c \Rightarrow$ no surface wave induced head wave.
- Hard soil:
 - 1 Few impact zone oscillations.
 - 2 $v_s \gg c \Rightarrow$ high amplitude surface wave induced head infrasound.

Léo Martire

SPECEEMID

Equations
Numerical Method

3 Applicat

Short Range: Seismic

Overview

Recordings

Long Range:

Eartnqua

Recordings Longer Range:

Atmospheric explosions

Recording

C---!--:--

General Conclusion

References

Balloon Barograms

• Barograms for balloon sensors 300 m away from source:

Léo Martire

SPECEEMID

Equations
Numerical Method

3 Applicati

Short Range: Seismic

Overview

Recordings

Long Range:

Overvier

Recordings
Longer Range:

explosions

Recording

Conclusions

General Conclusio
Limitations, and
Future Work

Reference

Balloon Barograms

• Barograms for balloon sensors 300 m away from source:

• Head infra-sounds' amplitudes are conserved with altitude.

Léo Martire

SPECFEM-D

Equations
Numerical Method

3 Application

Short Range: Seismic Hammer

Recordings Long Range:

Overview

Recordings
Longer Range:
Atmospheric
explosions
Overview

Recordings

Conclusions

General Conclusion Limitations, and

References

Earthquake: Larger Scales

Models:

• Ground: CRUST1.0.

• Atmosphere: MSISE00-HWM93.

Léo Martire

SPECFEM-D

Equations Numerical Method

3 Applicati Cases

Short Range: Seismic Hammer Overview Recordings Long Range:

Overview

Recordings Longer Range: Atmospheric explosions Overview

Conclusions

General Conclusion Limitations, and

References

Earthquake: Larger Scales

- Models:
 - Ground: CRUST1.0.
 - Atmosphere: MSISE00-HWM93.
- Source: 2 types of fault slips (45° and 0° dip).
 - 5 km depth.
 - $M_w = 2.5$, $f_0 = 2$ Hz.

Léo Martire

SPECFEM-D

Equations
Numerical Method

3 Application Cases

Short Range: Seismic Hammer

Recordings

Overview

Recordings Longer Range: Atmospheric explosions

Overviev

Conclusion

General Conclusion Limitations, and

Reference

Earthquake: Larger Scales

- Models:
 - Ground: CRUST1.0.
 - Atmosphere: MSISE00-HWM93.
- Source: 2 types of fault slips (45° and 0° dip).
 - 5 km depth.
 - $M_w = 2.5$, $f_0 = 2$ Hz.
- 1% saturated snapshots (left: 45°, right: 0°, top: t = 1 s, bottom: t = 18 s):

Léo Martire

SPECEEM-D

Equations
Numerical Method

3 Applicat

Short Range: Seism

Overview

Recordings Long Range:

Earthqua

Recordings

Longer Range: Atmospheric

explosions

Recording

Conclusions

General Conclusi Limitations, and Future Work

References

Stratospheric Barograms

• Barograms for balloon sensors at z = 15 km:

- Amplitudes of infrasounds created by surface waves:
 - are conserved with distance,
 - do not depend on the source mechanism (away from source).

Léo Martire

SPECFEM-D

Equations Numerical Method

3 Applicat

Short Range: Seismic

Overview

Recording

Long Range:

Overviev

Recordin

Longer Range: Atmospheric

Overview

Recordings

Conclusion

General Conclusion Limitations, and Future Work

References

Atmospheric Explosions: Even Larger Scales

• Models:

- Ground: soft, illustrative only.
- Atmosphere: MSISE-HWM for latitude 66°, high wind gradients.

Léo Martire

SPECFEM-D

Equations Numerical Method

3 Applicat

Short Range: Seism

Overview

Recording

Long Range:

Commission

Overview

Longer Range: Atmospheric explosions

Overview

Recording

Conclusion

General Conclusion
Limitations, and
Future Work

Reference

Atmospheric Explosions: Even Larger Scales

• Models:

- Ground: soft, illustrative only.
- Atmosphere: MSISE-HWM for latitude 66°, high wind gradients.

Sources:

- 3 atmospheric explosions,
- z = 1, 30, 90 km,
- intensity scaled with density.

Léo Martire

SPECFEM-D

Equations
Numerical Method

3 Applicat

Short Range: Seismic

Overview

Recording

Long Range:

Earthqua

Overvie

Recordi

Atmospheric explosions

Overview

Recordings

Conclusion

General Conclusi Limitations, and

Reference

Atmospheric Explosions: Even Larger Scales

Models:

- Ground: soft, illustrative only.
- Atmosphere: MSISE-HWM for latitude 66°, high wind gradients.

Sources:

- 3 atmospheric explosions,
- z = 1, 30, 90 km,
- intensity scaled with density.

• 1% saturated snapshots (left: t = 15 s, right: t = 105 s):

Léo Martire

SPECEEM-D

Equations
Numerical Method

3 Applicat

Short Range: Seismic

Hammer

Recordings Long Range:

Earthqua

Overviev

Overviev

Longer Range: Atmospheric

Recordings

Recordings

Conclusion

General Conclusion
Limitations, and
Future Work

Reference

Barograms: ground vs. stratosphere

• Barograms from horizontal arrays of stations (z = 1 m, z = 30 km):

Léo Martire

SPECFEM-D

Equations
Numerical Method

3 Application

Short Range: Seismic

Overview

Recordings Long Range:

Earthqua

Overvie

Recordings Longer Range: Atmospheric

Overview Recordings

Recording

General Conclusion Limitations, and

Reference

© **()**

Barograms: ground vs. stratosphere

• Amplitudes laterally decrease slower at z = 30 km than at ground.

Léo Martire

SPECEEM-D

Equations
Numerical Method

3 Applicat

Short Range: Seism

Overview

Recordings Long Range:

Earthqua

Overvie

Recordings
Longer Rang

explosions Overview

Recordings

Conclusion

General Conclusio Limitations, and Future Work

eferences

© **1**

Barograms: ground vs. stratosphere

- Amplitudes laterally decrease slower at z = 30 km than at ground.
- Differential time (at z = 30 km) can constrain explosions' altitudes.

Léo Martire

Numerical Method

Long Range:

Recordings

Barograms: ground vs. stratosphere

• Amplitudes laterally decrease slower at z = 30 km than at ground.

- Differential time (at z = 30 km) can constrain explosions' altitudes.
- Wind is an unknown, but balloon with GPS = wind probe.

Léo Martire

Short Range: Seismic

Long Range:

Conclusions

Overview

Numerical Method

2 3 Application Cases

Short Range: Seismic Hammer

3 Conclusions

General Conclusions Limitations, and Future Work

Léo Martire

SPECFEM-DG

Equations Numerical Metho

3 Applicati Cases

Short Range: Seismi

Hammer

Recording

Long Rang

Earthqual

Overviev

Longer Range Atmospheric

Overview

Recording

Conclusions

General Conclusions

5.6

- 1) What can balloon sensors bring?
 - Short-range (*cf.* seismic hammer):
 - Information on ground structure (cf. hard soil's head wave).
 - Monitoring of epicentre infrasound, without clipping (as opposed to ground stations).

Léo Martire

SPECFEM-DG

Equations Numerical Metho

3 Application Cases

Short Range: Seism

Overview

Recording Long Rang

Larthqua

Overviev

Longer Range Atmospheric

Overview

General Conclusions

Limitations, and

Reference

- 1) What can balloon sensors bring?
 - Short-range (*cf.* seismic hammer):
 - Information on ground structure (cf. hard soil's head wave).
 - Monitoring of epicentre infrasound, without clipping (as opposed to ground stations).
 - Long-range (*cf.* earthquakes):
 - Monitoring of surface waves induced signals, even far away (\simeq 30 km).

Léo Martire

SPECFEM-DO

Equations Numerical Metho

3 Application

Short Range: Seism

Hammer

Recording

Long Rang

Overviev

Recordin

Longer Range Atmospheric explosions

Overview Recordings

Conclusions

General Conclusions Limitations, and

Future Work

Reference

© BY

- 1) What can balloon sensors bring?
 - Short-range (cf. seismic hammer):
 - Information on ground structure (cf. hard soil's head wave).
 - Monitoring of epicentre infrasound, without clipping (as opposed to ground stations).
 - Long-range (*cf.* earthquakes):
 - Monitoring of surface waves induced signals, even far away (\simeq 30 km).
 - Stratospheric monitoring (*cf.* atmospheric explosions):
 - Stratospheric barograms study can help constrain:
 - explosions' altitudes,
 - atmospheric parameters (if source is known).

Léo Martire

SPECFEM-DO

Equations Numerical Metho

3 Application Cases

Short Range: Seism

Overview

Long Rang

Cuercie

Overviev

Recordings Longer Rang

Atmospheric explosions

Recordings

General Conclusions

Limitations, ar Future Work

deferences

- 1) What can balloon sensors bring?
 - Short-range (*cf.* seismic hammer):
 - Information on ground structure (cf. hard soil's head wave).
 - Monitoring of epicentre infrasound, without clipping (as opposed to ground stations).
 - Long-range (*cf.* earthquakes):
 - Monitoring of surface waves induced signals, even far away (\simeq 30 km).
 - Stratospheric monitoring (*cf.* atmospheric explosions):
 - Stratospheric barograms study can help constrain:
 - explosions' altitudes,
 - atmospheric parameters (if source is known).
- 2) Our simulations can help design new experiments.

Léo Martire

SPECFEM-DO

Equations
Numerical Method

3 Applicati

Short Range: Seismic

Hammer

Overviev

Recordin

Long Range:

Cartifiqua

Overview

Longer Range:

explosions

Recording

Conclusions

General Conclusion

Future Work

References

Limitations, and Future Work

- Limitations:
 - Simulations are 2D:
 - geometric attenuation underestimated,
 - but in some cases re-scalable in post-process.

Léo Martire

SPECFEM-D

Equations
Numerical Metho

3 Applicat

Short Range: Seism

Hammer

Overview

Long Rang

Earthqua

Overvie

Recordings
Longer Range

Overview

Recording

Conclusion

General Conclusion
Limitations, and
Future Work

References

Limitations, and Future Work

- Limitations:
 - Simulations are 2D:
 - geometric attenuation underestimated,
 - but in some cases re-scalable in post-process.
- Ouvertures / Future work:
 - 3D simulations:
 - with more complex sources (e.g. ocean microbaroms, ...),
 - with more complex topography (e.g. mountain ranges, ...).
 - Infer sensitivity of observations to atmospheric models
 ⇒ prepare inversion.

Léo Martire

Numerical Method

Short Range: Seismic

Recordings

Long Range:

Overview

Recordings Longer Range: Atmospheric

Recordings

Limitations, and Future Work

Thank you for your attention.

Léo Martire

SPECFEM-DG

Equations Numerical Method

3 Application Cases

Hammer
Overview

Recordings Long Range

Overview

Recordings Longer Range Atmospheric

Overview

Conclusion

General Conclusi Limitations, and Future Work

References

(CICICIICC.

© Đ

Contact: leo.martire@isae.fr

References:

Brissaud, Q., Martin, R., Garcia, R. F., and Komatitsch, D. (2017).

Hybrid galerkin numerical modelling of elastodynamics and compressible navier–stokes couplings: applications to seismo-gravito acoustic waves.

Geophysical Journal International, 210(2):1047–1069.

Komatitsch, D. and Vilotte, J. P. (1998).

The spectral-element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures.

Bull. Seismol. Soc. Am., 88(2):368-392.

Krishnamoorthy, S., Komjathy, A., Pauken, M. T., Cutts, J. A., Garcia, R. F., Mimoun, D., Cadu, A., Sournac, A., Jackson, J. M., Lai, V. H., and Bowman, D. C. (2018). Detection of artificially generated seismic signals using balloon-borne infrasound sensors.

Geophysical Research Letters.

Tromp, J., Komatitsch, D., and Liu, Q. (2008). Spectral-element and adjoint methods in seismology. *Communications in Computational Physics*, 3(1):1–32.