

Controls on the disequilibrium condition of mountain gravel-bed streams Shawn Chartrand¹, Mark Jellinek, Marwan Hassan, Carles Ferrer-Boix ¹ shawn.m.chartrand@vanderbilt.edu - EGU2018 – 3535 GM8.1/HS9.15/SSP3.22 THE UNIVERSITY Funding by NSERC OF BRITISH COLUMBIA CRSNG inancé par CRSNG Mitacs Accelerate olitekter de Catallia

I – Motivation

Build a testable framework which quantifies disequilibrium at the reach scale

Reach

Length that scales or measures many average channel widths

 (\mathbf{c})

•

Q: What happens when a river is disturbed at the reach scale?

 \odot

 (\mathbf{i})

IIII – Summary

Q: What happens when a river is disturbed at the reach scale?

Transport Non Steady-State

Bed Profile Disequilibrium

60)

•

Physical responses neglecting channel position shifting and size change

Transport Non Steady-State

Physical responses neglecting channel position shifting and size change

Erosion/Deposition

- Local bed topography scales momentum delivery
- Fluid momentum delivery is a control parameter that governs the magnitude of sediment transport

Sediment Sorting

- Sediment texture scales the riverbed strength
- **Riverbed strength** is a control parameter that governs bed and particle responsiveness

Slide 3/12

cc

(00)

 (\mathbf{i})

II – Disequilibrium framework

Apply scaling theory to develop disequilibrium metric

۲

(cc)

The disequilibrium proposal

Chartrand et al., In Revision:

"...streams erode or build up their beds until **rates of bed topography and sediment sorting adjustment** are **comparable**" <u>Guglielmini, 1697</u>; Howard, 1982; <u>Ahnert, 1994</u>; Blom et al., 2016, 2017 CC

The disequilibrium proposal

Chartrand et al., In Revision: "...streams erode or build up their beds until rates of bed topography and sediment sorting adjustment are comparable" Guglielmini, 1697; Howard, 1982; Ahnert, 1994; Blom et al., 2016, 2017

Reach Scale Equilibrium

Topographic Adjustment Rate \approx Sediment Sorting Rate

Reach Scale Disequilibrium

Topographic Adjustment Rate ≈ Sediment Sorting Rate

 (\mathbf{i})

CC

Conceptualize the disequilibrium proposal as a **filtering problem**

60)

•

Conceptualize the disequilibrium proposal as a **filtering problem**

 (\mathbf{c})

•

Conceptualize the disequilibrium proposal as a **filtering problem**

 (\mathbf{c})

۲

Conceptualize the disequilibrium proposal as a **filtering problem**

Interactions

Modify the Surface Distribution

(†)

Derive expressions for the filters and interactions between the filters

- 1. 1D form of **Exner** (bed topography) and the **Hirano** (sediment sorting) equations.
- 2. Simplify and nondimensionalize the equations
- 3. Organize all dimensional terms to form coefficients

Slide 8/12

 (\mathbf{c})

•

Derive expressions for the filters and interactions between the filters

EXNER

 N_t : topographic response number

$$N_t \approx -\epsilon U_b$$

•

(cc)

HIRANO

 N_{p} : particle response number

(i)

CC

Disequilibrium Metric Proposal

EXNER

N_t: topographic response number

 $N_t \approx -\epsilon U_b$

HIRANO

 N_{p} : particle response number

$$N_p \approx -\epsilon \delta_2 U_p$$

U_p: particle size adjustment rate bed

N_e: channel response number(s)

Disequilibrium metric for alluvial mountain streams

$$N_e(t) = \left(\frac{N_t}{N_p}\right) = \left| \left(\frac{1}{\delta_2}\right) \frac{U_b}{U_p} \right|$$

III – Framework testing and extension

Testing with experimental data at the local scale

 \odot

 (\mathbf{i})

BY

 \odot

1.5

 \odot

 (\mathbf{i})

BY

Magnitude

 \odot

 (\mathbf{i})

BY

60)

 (\mathbf{i})

Test of the disequilibrium metric with experimental data

60)

 (\mathbf{i})

Test of the disequilibrium metric with experimental data

- 1. Disequilibrium metric a function of two competing adjustment rates: U_b and U_p
- 2. Readily measure data needed to calculate disequilibrium NEED MORE TESTING
- 3. Timescale of disequilibrium adjustment is a function of sediment mobility

- 1. Disequilibrium metric a function of two competing adjustment rates: U_b and U_p
- 2. Readily measure data needed to calculate disequilibrium NEED MORE TESTING
- 3. Timescale of disequilibrium adjustment is a function of sediment mobility

(i)

Looking Ahead and an Open Question

A. Framework can be scaled up to the drainage basin to evaluate larger scale conditionsB. Can the equilibrium metric better define the dynamic equilibrium regime?C. Is there a regime for which grain size adjustment is consistently dominant?

(i)

RE TESTING

obility

Summary Points

Readily measu
Timescale of d

Disequilibrium Reigns?

LOOKING Anead and an Open Question

A. Framework can be scaled up to the drainage basin to evaluate larger scale conditions

B. Can the equilibrium metric better define the dynamic equilibrium regime?

C. Is there a regime for which grain size adjustment is consistently dominant?

(cc)

Questions

e-mail: shawn.m.chartrand@vanderbilt.edu

website: sites.google.com/view/smchartrand

Acknowledgements

The first author wishes to thank David Furbish for incredible support while developing the ideas presented today. Tom Dunne also provided plentiful, piercing and constructive feedback at a pivotal time in the process. Thanks also to Matteo Saletti, Kevin Pierce and Anna Grau-Galofre.

Experimental Channel Topography: $t_e = 0$ minutes