Photonuclear reactions triggered by lightning discharges in a Japanese winter thunderstorm

Teruaki Enoto, Yuki Wada, Yoshihiro Furuta, Kazuhiro Nakazawa, Takayuki Yuasa, Kazufumi Okuda, Kazuo Makishima, Mitsuteru Sato, Yousuke Sato, Toshio Nakano, Daigo Umemoto, Harufumi Tsuchiya, and GROWTH collaboration (Kyoto University, The University of Tokyo, RIKEN, Nagoya University, Hokkaido University, and JAEA)

Enoto et al., Nature 551, 481 (2017)
Winter thunderstorm and lightning in Japan

- Low altitude (<1 km), powerful lightning, frequent positive discharge
- Ideal for observing the high-energy atmospheric phenomena

GROWTH (Gamma-Ray Observation of Winter Thundercloud) project

- Started in 2006, and expanded to multi-point measurements since 2015 for gamma-ray glow.

![Map of Siberian airmass and Japan island](image)

2017/2/6 15:00 JST

Himawari-8 / NICT

http://himawari8.nict.go.jp

Graph showing count rate (cnt/s) [>3 MeV]

- “Long”-duration event (Tsuchiya+07)
- Bremsstrahlung gamma-rays from accelerated electrons in thunderstorms

Notes:

- 10 minute cosmic-ray induced background

- 6.15: \(\frac{0.8}{0.8} \) MeV

- \(\frac{3}{3} \) MeV

- 0.8 MeV

- Count rate (cnt/s) [>3 MeV]

- Time (JST)
Radiation detectors for mapping observations

A new stand-alone, low cost, and high-performance data acquisition (DAQ) system was developed; e.g., FPGA board of 4 channel 50 MHz, 12 bit ADC

- Gamma-rays detected with BGO scintillators
- Recorded with energy and GPS time tag
- Environmental sensors (temperature, pressure, etc)
- Mobile data transfer & remote control
- Deployed at local high schools, universities
- Supported by academic crowdfunding, and aiming at distributing to citizen scientists

Wada, Master thesis of the University of Tokyo, “Construction of the multi-point observation network for thundercloud gamma-rays” (ref) FPGA/ADC board specification http://ytkyk.info/blog/2016/09/04/growth-fpga-adc-board/ (C) T. Yuasa
Radiation detectors for mapping observations

Cost >$20 k

Cost ~$4 k

2006 December

2016 October

Front-end Board
ADC board
Raspberry Pi
DAQ

BGO scintillator (25x8x2.5 cm³)
web camera
PMT
water proof box

DAQ electronics

(Detector FY2016)

Wada, Master thesis of the University of Tokyo, “Construction of the multi-point observation network for thundercloud gamma-rays” (ref) FPGA/ADC board specification http://ytkyk.info/blog/2016/09/04/growth-fpga-adc-board/ (C) T. Yuasa

(C) T. Yuasa
Short-duration burst associated with lightning on February 6, 2017, 17:34:06, at Kashiwazaki station had three components:

1. Intensive initial spike (<~a few milliseconds, exceeds 10 MeV)
2. Gamma-ray afterglow (<~100 ms, <10 MeV)
3. Delayed annihilation gamma rays (~minute, at 0.511 MeV)

[Diagram showing the location of detectors and monitoring stations, with graphs illustrating the time courses of different components of the radiation.]

- **2. Gamma-ray afterglow**
 - Detector C (>1.2 MeV)
 - Count (10 ms)
 - Time (ms)

- **3. Annihilation gamma rays**
 - Detector A (0.35-0.60 MeV)
 - Count (10 ms)
 - Time (ms)

[Arrow showing the wind speed and direction.]
Short-duration burst associated with lightning on February 6, 2017, 17:34:06, at Kashiwazaki station had three components:

1. **Intensive initial spike** (<~a few milliseconds, exceeds 10 MeV)
2. **Gamma-ray afterglow** (<~100 ms, <10 MeV)
3. **Delayed annihilation gamma rays** (~minute, at 0.511 MeV)
Photonuclear reactions triggered by lightning

\[\gamma + ^{14}\text{N} \rightarrow ^{13}\text{N} + n \]

\[^{13}\text{N} \rightarrow ^{13}\text{C} + e^+ + \nu \quad (p \rightarrow n + e^+ + \nu) \]
fast neutron

positron
Gamma rays from neutron and positrons

- **(n,p) reaction**
- **(n,p) reaction**
- **carbon isotope** ^{14}C
- **nitrogen isotope** ^{15}N
- **atmospheric nitrogen** ^{14}N
- **neutron capture**
- **prompt gamma rays**
- **electron-positron annihilation** at 0.511 MeV
- **annihilation gamma rays**
- **gamma-ray afterglow**
- **delayed emission**
- **positron**
- **electron**
- **semi-stable (half-life 5730 year) radiocarbon dating**
Short-duration burst associated with lightning on February 6, 2017, 17:34:06, at Kashiwazaki station had three components:

1. **Intensive initial spike** (<~a few milliseconds, exceeds 10 MeV)
2. **Gamma-ray afterglow** (<~100 ms, <10 MeV)
3. **Delayed annihilation gamma rays** (~minute, at 0.511 MeV)
Neutrons make the gamma-ray afterglow

Diagram:
- Detector A: decay constant 56 ± 3 (ms)
- Detector B: decay constant 55 ± 12 (ms)
- Detector C: decay constant 36 ± 4 (ms)

- Exponential decay constant of the sub-second afterglow is consistent with the theoretical prediction ~ 56 ms of the neutron thermalisation.
Neutrons make the gamma-ray afterglow

- Exponential decay constant of the sub-second afterglow is consistent with the theoretical prediction ~56 ms of the neutron thermalisation.
Neutrons make the gamma-ray afterglow

- Exponential decay constant of the sub-second afterglow is consistent with the theoretical prediction ~56 ms of the neutron thermalisation.
- Spectrum with a sharp cutoff at 10 MeV is well explained by prompt gamma rays from atmospheric nitrogens and surrounding materials.
Short-duration burst associated with lightning on February 6, 2017, 17:34:06, at Kashiwazaki station had three components:

1. **Intensive initial spike** (<~a few milliseconds, exceeds 10 MeV)
2. **Gamma-ray afterglow** (<~100 ms, <10 MeV)
3. **Delayed annihilation gamma rays** (~minute, at 0.511 MeV)

Graphical representation:

- **1. Intensive initial spike**
 - Red circle: Detector A (0.35-0.60 MeV)
 - Graph: Count s⁻¹ vs. Time (sec) with a peak at 60 s

- **2. Gamma-ray afterglow**
 - Blue circle: Detector C (>1.2 MeV)
 - Graph: Count (10 ms) vs. Time (ms) with a peak at 100 ms

- **3. Annihilation gamma rays**
 - Green circle: Detector A (0.35-0.60 MeV)
 - Graph: Deadtime-corrected Count (10 ms) vs. Time (ms) with a peak at 100 ms

Diagram notes:

- Relative enhancement values: 10^3, 10^2, 10^1
- Monitoring stations marked: 1 to 9

References:

Positron annihilation signal at 0.511 MeV

- The ~35 sec delay is consistent with the cloud moving from the lightning.
- The duration ~13 sec (1σ) x wind speed ~17 m/s → emission size ~200 m

- Relative intensity of the 0.511 MeV emission line and continuum below it gives a distance to the base of the positron-emitting cloud: ~80 m
- A lightning-triggered photonuclear event produces 4×10^{12} neutrons.

The observed annihilation spectrum and simulated models.
The background-subtracted spectrum in the delayed phase for detector A, accumulated over $t = 11.1–62.8$ s, is plotted, with black crosses indicating ±1σ errors. The simulated model curves are overlaid, for assumed distances to the base of the positron-emitting cloud of 0 m (that is, the detector is within the cloud; red), 40 m (green), 80 m (blue) and 160 m (magenta). The models are normalized by the total counts in the 0.4–0.6-MeV band.
Discussion

- Atmospheric oxygen also contributes to the lightning photonuclear reactions.
- Can explain past reports of 0.511 MeV (Umemoto+2016) and neutrons (Bowers+2017).
- Lightning produces atmospheric ^{13}N, ^{15}N, ^{13}C, and ^{14}C isotopes.

Estimated number of neutron 4×10^{12} produced by photonuclear reaction is within predicted range of 10^{11-15} (Babich+10, Carlson+14).
Summary

• GROWTH project has been observing high-energy atmospheric phenomena in the Japanese winter thunderstorm and lighting since 2006. We are also aiming at expanding to citizen science.

• We provided unequivocal evidence for the lightning-triggered photonuclear reactions of atmospheric nitrogen $^{14}\text{N} + \gamma \rightarrow ^{13}\text{N} + n$; (1) downward terrestrial gamma-ray flash, (2) gamma-ray afterglow of thermalised neutrons, and (3) annihilation gamma-ray signal at 0.511 MeV from the beta-plus decay of ^{13}N.

• Lightning provides channels to generate carbon isotopes.

Selected as one of the Top 10 Physics Breakthroughs of 2017 by Physics World magazine, IOP Publishing Ltd