Energetics of the Southern Ocean Mode

with With Jan Viebahn, Henk Dijkstra, Sybren Drijfhout & Anna von der Heydt

André Jüling

IMAU Utrecht University

EGU General Assembly 09.04.2018

Utrecht University

・ロト ・日 ・ ・ ヨ ・

 climate variability: global mean surface temperature vs. ocean heat content tus: some 10²³ J of heat missing ested locations of the missing heat:
 Indian Ocean (e.g. Meehl *et. al* (2011))
 Pacific (e.g. England *et. al* (2014))
 Atlantic (e.g. Chen and Tung (2014))
 Southern Ocean

 climate variability: global mean surface temperature vs. ocean heat content
 climate hiatus: some 10²³ J of heat missing esseted locations of the missing heat:
 Indian Ocean (e.g. Meehl *et. al* (2011))
 Pacific (e.g. England *et. al* (2014))
 Atlantic (e.g. Chen and Tung (2014))
 Southern Ocean

Summary 0

NTRODUCTION

climate variability: global mean surface temperature vs. ocean heat content
climate hiatus: some 10²³ J of heat missing
Suggested locations of the missing heat:

Indian Ocean (e.g. Meehl *et. al* (2011))
Pacific (e.g. England *et. al* (2014))
Atlantic (e.g. Chen and Tung (2014))
Southern Ocean

Summary 0

NTRODUCTION

climate variability: global mean surface temperature vs. ocean heat content
climate hiatus: some 10²³ J of heat missing
Suggested locations of the missing heat:

Indian Ocean (e.g. Meehl *et. al* (2011))
Pacific (e.g. England *et. al* (2014))
Atlantic (e.g. Chen and Tung (2014))
Southern Ocean

climate variability: global mean surface temperature vs. ocean heat content climate hiatus: some 10²³ J of heat missing Suggested locations of the missing heat: Indian Ocean (e.g. Meehl et. al (2011)) Pacific (e.g. England et. al (2014)) Atlantic (e.g. Chen and Tung (2014)) Southern Ocean

- climate variability:
 - global mean surface temperature vs. ocean heat content
- climate hiatus: some 10²³ J of heat missing
- Suggested locations of the missing heat:
 - Indian Ocean (e.g. Meehl et. al (2011))
 - Pacific (e.g. England et. al (2014))
 - Atlantic (e.g. Chen and Tung (2014)) Southern Ocean

- climate variability:
 - global mean surface temperature vs. ocean heat content
- climate hiatus: some 10²³ J of heat missing
- Suggested locations of the missing heat:
 - ▶ Indian Ocean (e.g. Meehl *et. al* (2011))
 - Pacific (e.g. England et. al (2014))
 - ► Atlantic (e.g. Chen and Tung (2014))
 - Southern Ocean

Southern Ocean Mode

Lorenz Energy Cycle

Mechanism

Consequences S

MODEL

PARALLEL OCEAN PROGRAM

Visolated

Model

▶ high resolution: $0.1^{\circ} \approx 10 \text{ km}$ ⇒ meso-scale eddies

Processes are

repeated monthly mean dimatological forcing every mode of variability that is not diurnal or seasonal is internal 325 model years, last 501 ml output

Southern Ocean Mode 00 Lorenz Energy Cycle

Mechanism

Consequences S

Summar 0

MODEL

PARALLEL OCEAN PROGRAM

Model

- high resolution: 0.1° ≈ 10 km
 ⇒ meso-scale eddies
 ocean only configuration
 ⇒ oceanic processes are isolated
 - repeated monthly mean dimatological forcing ⇒ every mode of variability that is not diurnal or seasonal is internal 325 model years, last 501 ml output

Southern Ocean Mode 00 Lorenz Energy Cycle

Mechanism

Consequences 5

MODEL

PARALLEL OCEAN PROGRAM

Model

- high resolution: 0.1° ≈ 10 km
 ⇒ meso-scale eddies
- ocean only configuration
 ⇒ oceanic processes are isolated
- repeated monthly mean climatological forcing
 ⇒ every mode of variability
 that is not diurnal or seasonal is internal
 325 model years, last 501 ml output

Southern Ocean Mode

Lorenz Energy Cycle

Mechanism

Consequences

Summary

MODEL

PARALLEL OCEAN PROGRAM

Model

- ▶ high resolution: $0.1^{\circ} \approx 10 \text{ km}$ ⇒ meso-scale eddies
- ocean only configuration
 ⇒ oceanic processes are isolated
- repeated monthly mean *g*limatological forcing *⇒* every mode of variability that is not diurnal or seasonal is internal
- 325 model years, last 50 full output

Introduction Model Southern Ocean Mode Lorenz Energy Cycle Mechanism Consequences 0. JUTHERN OCEAN MODE 50 yr cycle in ocean heat content • not seen in low resolution model \Rightarrow eddies seen essenti

ROPOSED MECHANISM: EDDIES – MEAN FLOW INTERACTION
 eddies interact with mean flow to alter energy input
 mechanism proposed by Hogg et al. (2005) for
 quasi-geostrophic model
 description in mechanical energy framework

・ロト ・日 ・ ・ 日 ・ ・

Introduction Model Southern Ocean Mode Lorenz Energy Cycle Mechanism Consequences Summary SOUTHERN OCEAN MODE 50 yr cycle in ocean heat content

▶ not seen in low-resolution model \Rightarrow eddies seem essential

Research question

What causes the Southern Ocean Mode?

ROPOSED MECHANISM: EDDIES – MEAN FLOW INTERACTION
 eddies interact with mean flow to alter energy input
 mechanism proposed by Hogg et al. (2005) for
 quasi-grostrophic model
 description in mechanical energy framework

Introduction Model Southern Ocean Mode Lorenz Energy Cycle Mechanism Consequences Summary O

- 50 yr cycle in ocean heat content
- ▶ not seen in low-resolution model \Rightarrow eddies seem essential

Research question

What causes the Southern Ocean Mode?

ROPOSED MECHANISM: EDDIES – MEAN FLOW INTERACTION
 eddies interact with mean flow to alter energy input
 mechanism proposed by Hogg et al. (2005) for
 quasi-grostrophic model
 description in mechanical energy framework

Introduction Model Southern Ocean Mode Lorenz Energy Cycle Mechanism Consequences Summary SOUTHERN OCEAN MODE 50 yr cycle in ocean heat content

▶ not seen in low-resolution model \Rightarrow eddies seem essential

Research question

What causes the Southern Ocean Mode?

PROPOSED MECHANISM: EDDIES – MEAN FLOW INTERACTION

(同)(ヨ)

- eddies interact with mean flow to alter energy input
- mechanism proposed by Hogg et al. (2005) for quasi-geostrophic model
- description in mechanical energy framework

Introduction Model Southern Ocean Mode Lorenz Energy Cycle I O O O O O O

Mechanism

Consequences

Summary 0

LORENZ ENERGY CYCLE

MECHANICAL ENERGY BALANCE OF THE OCEAN

1. Reservoirs

- Kinetic Energy (KE)
- Available Potential Energy (APE)

KE: wind stress forcing $\propto \vec{u} \cdot \vec{\tau}$ APE: buoyancy fluxes (heat and salinity) Conversion

• APE \leftrightarrow KE: vertical movement of water scipation

steady state assumption: dissipation = residual

Eddy-mean decomposition: $\overline{xy} = \overline{xy} + \overline{x'y'}$ with $\overline{x} = \frac{1}{T} \int_0^T x \, dt$ Additional eddy-mean conversion terms KE, rotropic instab

CC II

O O	0 O	00	Lorenz Energy Cycle ●	00	Consequences 00	o Summary
LOREN MECHANI	NZ EN	NERGY CYCI ergy balance of	LE the ocean	22	2	R
1.	Reserv	voirs				- All
2.	 K A Gener K A 	inetic Energy (KE vailable Potential ation E: wind stress for PE: buoyancy flu	E) Energy (APE) cing $\propto \vec{u}\cdot \vec{\tau}$ xes (heat and sa	linity)	R	
3-	Conve	rsion		.,,	- AL	
E.	► A	$PE \leftrightarrow KE: vertica$	l movement of v	water		
4.	Dissip	ation				
	st st	eady state assum	ption: dissipatio	on = residu	ial _	
	y-mea	n decomposition	$n: \overline{xy} = \overline{x}\overline{y} + \overline{x'}$	$\overline{y'}$ with \overline{x} :	$= \frac{1}{T} \int_0^T x \mathrm{d}t$	
	additi	dhal eddy-mear	n conversion te	rms		
СС () ВУ	► K	E. rotropic inst	ab	4 D F 4 🗗		

0	o	00	 Lorenz Energy Cycle 	00	00	o Summary
LOREN	JZ EN	NERGY CYCI	E	20	22	6
MECHANIC	CAL ENF	ERGY BALANCE OF	THE OCEAN			147 D
1.	Reserv	oirs			225	
	► A	vailable Potential	Energy (APE)		29.00	
2.	Gener	ation				3 PAN
	► K	E: wind stress for PE: buoyancy flu	cing $\propto ec{u}\cdotec{ au}$ xes (heat and sa	linity)	N.	
3.	Conve	ersion				
	► A	$PE \leftrightarrow KE: vertica$	l movement of	water		
4.	Dissip	ation				
	> st	eady state assum	ption: dissipatio	on = residu	ıal	
	y-meai	n decomposition	n: $\overline{xy} = \overline{x}\overline{y} + \overline{x'}$	$\overline{y'}$ with \overline{x}	$= \frac{1}{T} \int_0^T x \mathrm{d}t$	
	additi	<mark>çma</mark> l eddy-mear	conversion te	rms		
CCC I	► K	rotropic inst	ab	< -> < 5		

т

-1

Introduct 0	ion Mo O	del So oc	uthern Ocean Mode	Lorenz Energy Cycle ●	Mechanism 00	Consequences 00	Summary O
LOR	RENZ ANICAL	ENE: ENERG	RGY CYCI Y BALANCE OF	LE The Ocean	22	2.5	2
13	1. Res	servoir	s				A CAL
		Kinet Avail	<mark>tic Energy (KE</mark> able Potential) Energy (APE)		42	
	Z. Gel	· KE: w · APE:	vind stress for buoyancy flu	cing $\propto \vec{u} \cdot \vec{\tau}$ xes (heat and sal	inity)	R	
	3. Co	nversi	on -	movement of w	vator		
	4. Dis	sipatio	on		vater		
K.		stead	y state assumj	otion: dissipatio	n = residu	al	
	lddy-m ► add	nean đ ditiqna	ecompositior Il eddy-mean	$\overline{xy} = \overline{xy} + \overline{x'y}$	\overline{x}' with \overline{x} =	$=rac{1}{T}\int_0^T x\mathrm{d}t$	
0	O BY	KE.	rotropic insta	ab ³	< - > < @		

G

0	tion	Model O	Southern Ocean Mode	Lorenz Energy Cycle ●	Mechanism 00	Consequences 00	o Summary
	REN	Z EN	IERGY CYCI	LE The ocean	22	21	2
	1. 1 2. (Reserv Kii Av Genera KE	oirs netic Energy (KE railable Potential ation E: wind stress for	Energy (APE) cing $\propto \vec{u} \cdot \vec{\tau}$			
	3. (4. 1	 Al Conver Al Dissipation State 	PE: buoyancy flu rsion PE ↔ KE: vertica ation	xes (neat and sa l movement of v	vater	al	
	Eddy	z-mean additi¢	decomposition fol eddy-mear to rotropic inst	n: $\overline{xy} = \overline{xy} + \overline{x'y}$ n conversion te	$\overline{y'}$ with \overline{x} =	$= \frac{1}{T} \int_0^T x \mathrm{d}t$	
			I A HATTAC		4 U > 4 D		

Ċ.

0	0 Nodel	00	Lorenz Energy Cycle ●	00	00	o O
	IZ EN	IERGY CYCI	L E The ocean	22	24	
1. 2.	Reserv Ki Av Genera KI	oirs netic Energy (KE vailable Potential ation E: wind stress for) Energy (APE) cing $\propto \vec{u} \cdot \vec{\tau}$		R	
3. 4.	Conve AI Dissipa	rsion PE ↔ KE: vertica ation	l movement of v	vater		
Eddy	► ste y-mear additic	ady state assum decomposition inal eddy-mear ; barotropic inst	ption: dissipation $\overline{xy} = \overline{xy} + \overline{x'y}$ a conversion termination termina	$\overline{y'}$ with \overline{x} = rms	al = $\frac{1}{T} \int_0^T x \mathrm{d}t$	
	5.			4 D > 4 D		

Model Southern Ocean Mode Lorenz Energy Cycle Mechanism Consequences MECHANISM: EDDY VS. MEAN FLOW eddies seem crucial A maximum energies: increased generation of eddies, onzonality increases decleasing energy input, dissipation of energy energy: weak production of eddies increasing energies: zonal acceleration by wind

Model Southern Ocean Mode 0 00 Lorenz Energy Cycle

Mechanism

Consequences

Summary 0

MECHANISM: EDDY VS. MEAN FLOW

eddies seem crucial

A maximum energies: increased generation of eddies, nonzonality increases

B W a sing energy input, dissipation of energies by the energy: weak production of eddies 1. Morensing energies: zonal acceleration by wind

Model

Southern Ocean Mode

Lorenz Energy Cycle

Mechanism

Consequences

Summary 0

MECHANISM: EDDY VS. MEAN FLOW

- eddies seem crucial
- A maximum energies: increased generation of eddies, nonzonality increases
- **B** decreasing energy input, dissipation of energies

Observation of eddies

meansing energies: zonal acceleration by wind

Model Southern Ocean Mode o oo Lorenz Energy Cycle

Mechanism

Consequences

Summary 0

MECHANISM: EDDY VS. MEAN FLOW

- eddies seem crucial
- A maximum energies: increased generation of eddies, nonzonality increases
- B decreasing energy input, dissipation of energies
- C low total energy: weak production of eddies
 - meansing energies: zonal acceleration by wind

Model Southern Ocean Mode o oo Lorenz Energy Cycle

Mechanism

Consequences

Summary 0

MECHANISM: EDDY VS. MEAN FLOW

- eddies seem crucial
- A maximum energies: increased generation of eddies, nonzonality increases
- B decreasing energy input, dissipation of energiesC low total energy: weak production of eddiesD increasing energies: zonal acceleration by wind

The phasing of energy components supports the eddy-mean flow interaction as the cause of the SOM!

Introduction Model Southern Ocean Mode Lorenz Energy Cycle Mechanism Consequences

Summary

P

SOM CONSEQUENCES

convection affects meridional overturning

onciusion

The eddy-mean flow interaction mechanisms likely causes the Southern Ocean Mode.

Model Southern Ocean Mode

Lorenz Energy Cycle

Mechanism

Consequences Summary

SUMMARY

- missing heat of the hiatus
 Southern Ocean Mode
 50 year period mode
- Inclusional energy cycle
 Inclusional energy cycle
 Inclusional flow interaction
 Inclusional phasing of
 Prorgy components
 Preddies are crucial
 Provection and its effects in overturning
 Inclusional energy associated heat release

onclusion

The eddy-mean flow interaction mechanisms likely causes the Southern Ocean Mode.

Introduction Model Southern Ocean Mode Lorenz Energy Cycle Mechanism o o o oo oo oo oo

SUMMARY

missing heat of the hiatus
 Southern Ocean Mode

 50 year period mode

 mechanical energy cycle

 mechanical energy cycle
 mechanical energy cycle
 acorgy components
 eddies are crucial
 convection and its effects in overturning
 associated heat release

total KE -3 -2 -1 0 1 2 3 loging(KE_{weak}(/Jm³)]

Consequences

Summary

onclusion

The eddy-mean flow interaction mechanisms likely causes the Southern Ocean Mode.

Model Southern Ocean Mode

Lorenz Energy Cycle

Mechanism

Consequences

Summary

SUMMARY

- missing heat of the hiatus
- Southern Ocean Mode
 - 50 year period mode
- mechanical energy cycle
- eddy mean flow interaction
 - correct phasing of energy components
 - eddies are crucial
 - convection and its effects in overturning
 - 👥 🕨 associated heat release

onclusion

he eddy-mean flow interaction mechanisms likely causes the Southern Ocean Mode.

Model Southern Ocean Mode

Lorenz Energy Cycle

depth [km]

Mechanism

time [model year]

Consequences

Summary

SUMMARY

- missing heat of the hiatus
- Southern Ocean Mode
 - 50 year period mode
- mechanical energy cycle
- eddy mean flow interaction
 - correct phasing of energy components
 - eddies are crucial
- convection and its effects in overturning
 - associated heat release

Conclusion

The eddy-mean flow interaction mechanisms likely causes the Southern Ocean Mode.

Model Southern Ocean Mode

Lorenz Energy Cycle

Mechanism

Consequences

Summary

SUMMARY

- missing heat of the hiatus
- Southern Ocean Mode
 - 50 year period mode
- mechanical energy cycle
- eddy mean flow interaction
 - correct phasing of energy components
 - eddies are crucial
- convection and its effects in overturning
 - Associated heat release
 Associated heat
 As

Conclusion

The eddy-mean flow interaction mechanisms likely causes the Southern Ocean Mode.

Introduction Model Southern Ocean Mode Lorenz Energy Cycle o o o oo o Mechanism

▲□ ▶ ▲圖 ▶ ▲ 圖 ▶

Consequences 00 Summary 0

Appendix

Introduction	Model	Southern Ocean Mode	Lorenz Energy Cycle	Mechanism	Consequences	Summary
0	0	00	0	00	00	0

PPENDIX

PHASING

different phase naming convention!

- A low total energy: weak production of eddies
- B increasing energies: zonal acceleration by wind & tilting of isopycnals
- C maximum energies: increased generation of eddies, nonzonality increases
- D decreasing energy input, dissipation of energies

Introduction 0	Model 0	Southern Ocean Mode 00	Lorenz Energy Cycle 0	Mechanism 00	Consequences 00	Summary 0
APPEN	JDIX	BR C	2.00	90	18.4	6
LECEQUA	ATIONS:	RESERVOIRS				R
		$P_m = -$	$\frac{g}{2} \int\limits_{V} \frac{1}{n_0} \bar{\rho}^{*2} \mathrm{d}V$		40	(1)
		$P_e = -$	$\frac{g}{2} \int\limits_{V} \frac{1}{n_0} \overline{\rho^{*/2}} \mathrm{d}V$		R	(2)
	17	$K_m = \frac{\rho}{2}$	$\frac{0}{2}\int\limits_V \left(\bar{u}^2 + \bar{v}^2\right) dv$	₫V		(3)
	G.	$K_e = \frac{\rho}{2}$	$\frac{0}{2}\int\limits_{V}\left(\overline{u^{\prime 2}+v^{\prime 2}}\right)$	dV		(4)
Defi	nition	of density anon	naly:			
СС () ву		$\rho^*(x,y,z)$	$= \rho(x,y,z) - \rho(x,y,z)$	$\rho_{ref}(z)$		(5)₹ २०९२

O Introduction	Model O	Southern Ocean Mode	O Cycle	Mechanism 00	Consequences 00	o Summary
APPEN LEO EQUA	IDIX Ations:	GENERATION	SN	22	220	R
- 10	j.	$G(P_m) = -g \int_{S}$	$\underbrace{\left(\frac{\alpha_{0,1}}{n_0}\overline{J_s\rho^*} + \frac{\beta_0}{n_0}\right)}_{\text{heat}} + \underbrace{\frac{\beta_0}{n_0}}_{\text{s}}$	$\left(\frac{1}{0}\overline{G_s}\overline{\rho^*}\right)$	15	(6)
	1	$G(P_e) = -g \int_{S}$	$\left(\underbrace{\frac{\alpha_{0,1}}{n_0}\overline{J'_s\rho'}}_{\text{heat}} + \underbrace{\frac{\beta_{0,1}}{n_0}}_{\text{sa}}\right)$	$\frac{1}{G'_{s}\rho'}d$	S	(7)
	C.	$G(K_m) = \int\limits_{S} \left(\overline{\tau_x}\right)$	$\overline{u} + \overline{\tau_y}\overline{v}) dS$			(8)
	2	$G(K_e) = \int_{S} \left(\overline{\tau}_{S}^{\prime}\right)$	$(u' + \tau'_y v') dS$		ALL CAL	(9)
CC O BY				< - > < 8		

Introduction 0	Model 0	Southern Ocean Mode 00	Lorenz Energy Cycle 0	Mechanism 00	Consequences 00	Summary 0
APPEN	NDIX	Parce	25197	22	24	6
LEO EQUA	ATIONS:	CONVERSION				Su
	13		f a		20	
	Q.	$C(P_e, P_m) = -\int_V$	$\frac{\frac{8}{n_0}}{n_0}\overline{\rho' u'_h}\cdot\nabla_h\bar{\rho}$	dV		(10)
	2	$C(K_e, K_m) = \rho_0$	$\int_{U} \left(\overline{u' \mathbf{u}'} \cdot \nabla \overline{u} + \right)$	$\overline{v'\mathbf{u'}}\cdot\nabla\overline{v}$)	dV ((11)
	58 ($C(P_m, K_m) = -g$	$\int_{V} \bar{\rho} \bar{w} \mathrm{d} V$		AS	(12)
		$\mathcal{C}(P_e, K_e) = -g$	$\int_{V} \overline{\rho' w'} \mathrm{d}V$			(13)
CC ()				10110		

Introduction Model Southern Ocean Mode Lorenz Energy Cycle Mechanism Consequences Summary 0 0 00 00 00 00 00 00 0

REFERENCES

Hogg, A. M., P. D. Killworth, J. R. Blundell, and W. K. Dewar 2005. Mechanisms of Decadal Variability of the Wind-Driven Ocean Circulation. *Journal of Physical Oceanography*, 35(4):512–531.

Le Bars, D., J. P. Viebahn, and H. A. Dijkstra 2016. A Southern Ocean mode of multidecadal variability. *Geophysical Research Letters*, 43(5):2102–2110.

Martin, T., W. Park, and M. Latif
2013. Multi-centennial variability controlled by Southern Ocean
convection in the Kiel Climate Model. *Climate Dynamics*, 40(7-8):2005–2022.
von Storch, J.-S., C. Eden, I. Fast, H. Haak, D. Hernández-Deckers,
E. Maier-Reimer, J. Marotzke, and D. Stammer
2012. An estimate of Lorenz energy cycle for the world ocean based on the
1/10 STORM/NCEP simulation. *Journal of Physical Oceanography*,
(1992):120821111920009.

4 戸 ト 4 三 ト 4

