Climate Lab / Institute of Geography / University of Bremen / Germany European Geoscience Union (EGU) – April 9th 2018 – Vienna Session Cl4.17: Sea-Level rise: past, present & future

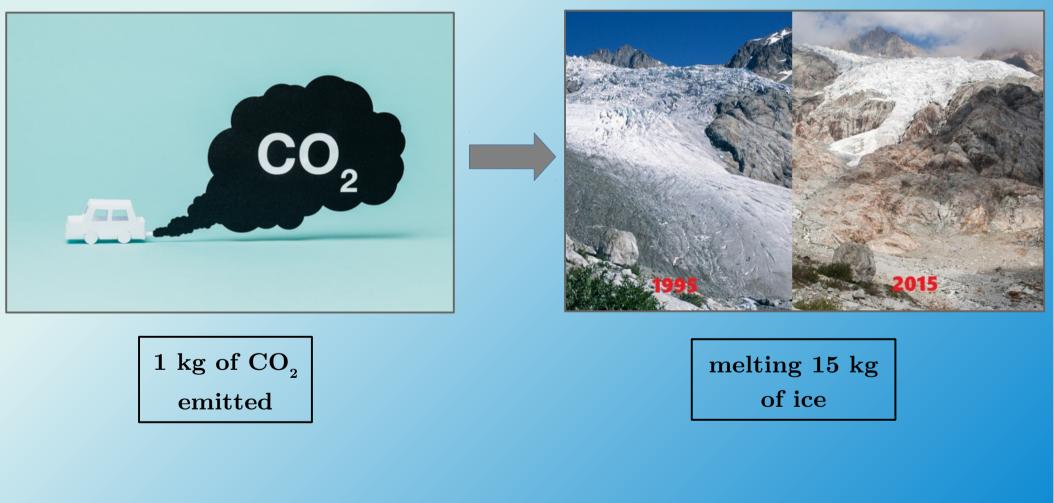
BY

<u>Source</u>: Maussion Fabien Nicolas Champollion^{1,*}, Ben Marzeion¹, Georg Kaser² and Fabien Maussion²

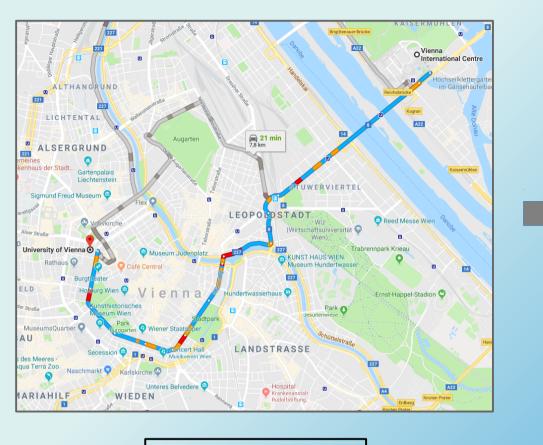
> ¹ University of Bremen, Germany ² University of Innsbruck, Austria Visiting scientist at the "Institut des Géosciences de l'Environnement (IGE)", France

LIMITED INFLUENCE OF CLIMATE CHANGE MITIGATION ON SHORT-TERM GLACIER MASS LOSS

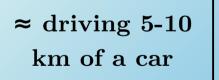
universität innsbruck


INTRODUCTION (1/3)

Glaciers are in disequilibrium with the current climate:


- \rightarrow long-term commitment of glacier mass loss !
- \rightarrow but not yet realized ...

Source: Ecrins National Park, France



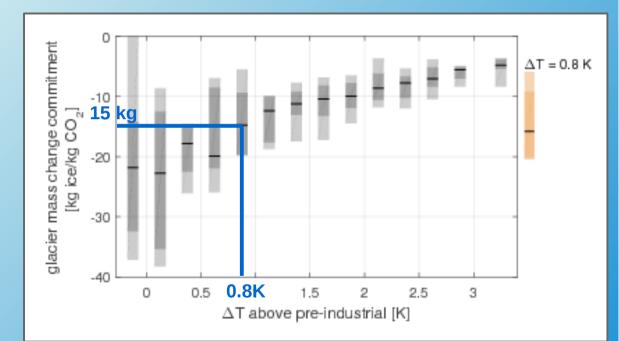
INTRODUCTION (2/3)

≈ melting 13 liquid water bottles

IN OTHER WORDS, EVERY DAY **WE** PARTICIPATE TO THE DISAPPEARANCE OF GLACIERS ...

Nicolas Champollion

INTRODUCTION (3/3)


We found that under present-day climate conditions, every emitted kg of CO_2 will eventually be responsible for a glacier mass loss of 14.8 +- 5 kg (equilibirum experiments).

Main results:

A. mass loss commitment is not already realized

B. relationship between CO_2 emission and glacier mass loss decreases with time:

- global glacier mass decreases with time
- mass balance / elevation feedback
- C. mass loss commitment is additive
- D. previous mass loss commitment is omitted

<u>Source</u>: Marzeion et al., 2018. © Nature Climate Change, no commercial reuse permitted

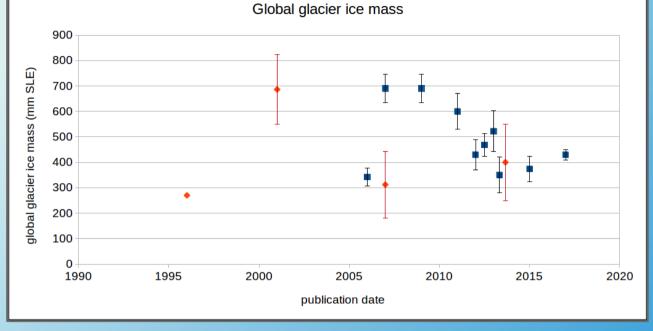
GLACIER MASS LOSS COMMITMENT (1/3)

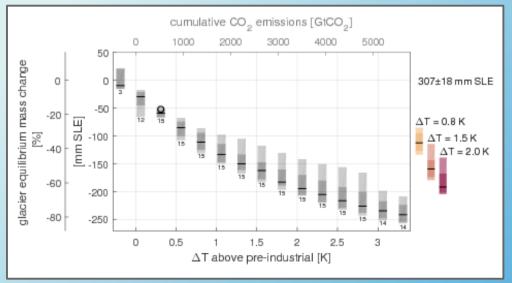
Universität Bremen*

glacier mass change commitment [kg ice/kg CO2] Using historical runs and RCP scenarios to force a temperature-index $\Delta T = 0.8 \text{ K}$ mass balance model and volume-area / volume-length scaling ... -20 Ice volume changes are small after 300 years \rightarrow equilibrium. -30 0 0.5 1.5 2.5 3 ∆T above pre-industrial [K] cumulative CO2 emissions [GtCO2] Ω. 1000 2000 3000 4000 5000 50glacier equilibrium mass change 307±18 mm SLE 0 0 3 -50 <u>Q</u> 12 -20 12. $\Delta T = 0.8 \text{ K}$ [mm SLE 8 -100 $\Delta T = 1.5 \text{ K}$ 15 -40 36 % $\Delta T = 2.0 \text{ K}$ -150 15 13 -60 -200Source: Marzeion et al., 15 15 15 2018. © Nature Climate -80 -25014 Change, no commercial 14 0.5 0.8K₁ reuse permitted 1.52.53 0 2 ∆T above pre-industrial [K]

GLACIER MASS LOSS COMMITMENT (2/3)

glacier mass change commitment $\Delta T = 0.8 K$ 1 Relationship between cumulative total anthropogenic -10 [kg ice/kg CO2] CO₂ emissions from 1870 and global mean air -20 temperature anomaly relative to 1861-1880 is linear ! -30 -40 0 0.5 1.5 2 2.5 3 ∆T above pre-industrial [K] Source: IPCC, AR5, 2013. Cumulative total anthropogenic CO₂ emissions from 1870 (GtCO₂) 1000 2000 7000 8000 3000 5000 6000 4000 F cumulative CO2 emissions [GtCO2] Temperature anomaly relative to 1861–1880 (°C) 0 1000 2000 5000 3000 4000 Δ 50 glacier equilibrium mass change 0 0 3 -50 0 -20 -100 -150 % -40 2 15 -60 -200 14 -80 Historica -250vr⁻¹ CO 0 0.5 1.5 2 2.5 З 1% vr⁻¹ CO₂ range ∆T above pre-industrial [K] 500 1000 1500 2000 2500 Cumulative total anthropogenic CO₂ emissions from 1870 (GtC)

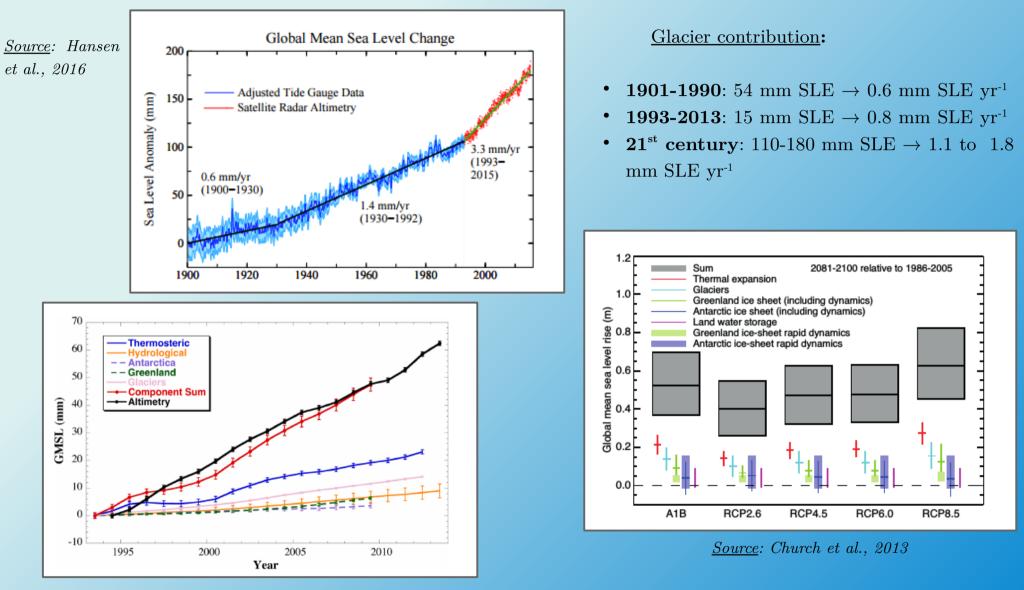

Universität Bremen*


GLACIER MASS LOSS COMMITMENT (3/3)

Universität Bremen*

<u>Current climate</u>: around 36% of the total glacier ice mass is committed to melt.

Paris agreement (1.5 & 2K): 50 to 60% of the total glacier ice mass is committed to melt.



Source: Champollion, pers. comm.

Antarctica & Greenland peripheral glaciers are not included – Global glacier ice mass is uncertain.

GLOBAL MEAN SEA LEVEL

The past, present and future contribution of glaciers to sea-level rise are 30 - 35% of the total sea-level rise.

Source: Chambers et al., 2017

Nicolas Champollion

Universität Bremen*

21^{st} Century Glacier Evolution (1/3)

But not all the glacier mass loss commitment is going to happen, at least for the 21^{st} century, and if humans are doing something !

What does it represent transitory ?

 21^{st} Century Glacier Evolution (2/3)

6 RCP2.6 scaled to $\Delta T = 1.5 K$ global mean ∆T [K] RCP2.6 RCP2.6 scaled to $\Delta T = 2.0 \text{ K}$ 4 RCP4.5 RCP6.0 **RCP8.5** 2 Using RCP scenarios to force temperatureindex mass balance model and volume-area / 0 - a volume-length scaling ... 0 g lacier mass change rate glacier mass change rate -0.5 0.2 \rightarrow transient experiments [mm SLE yr⁻¹ -1 % yr 0.4-1.5 0.6 -2 b 0.8 -2.5 300 100 total glacier mass total glacier mass [mm SLE] 250 80 2 200 60 Source: Marzeion et al., 2018. © Nature Climate Change, no 150 С

Nicolas Champollion

40

2100

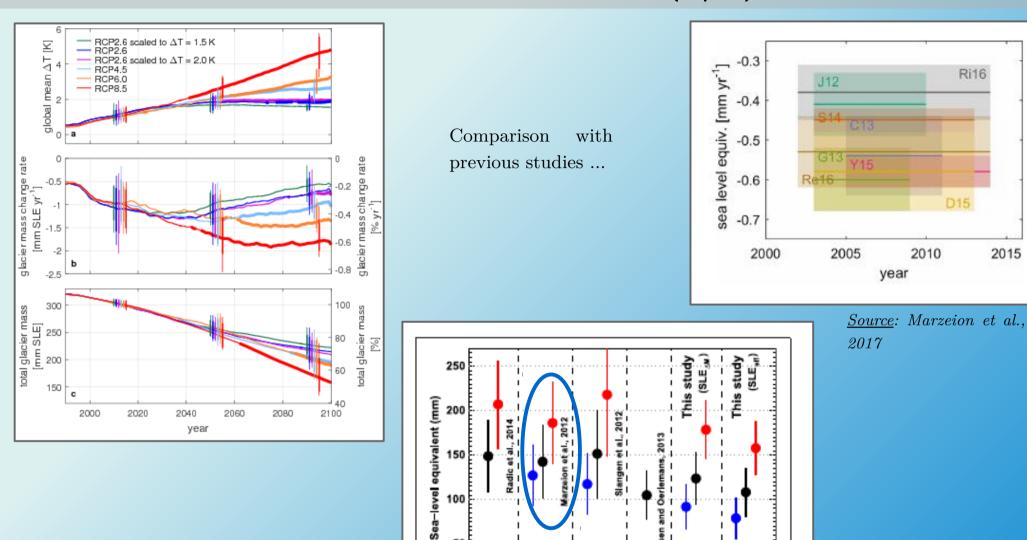
2080

2000

2020

2040

year


2060

commercial reuse permitted

Universität Bremen*

21^{st} Century Glacier Evolution (3/3)

Universität Bremen*

100

50

Ô

Source: Huss and Hock, 2015

FIGURE 13 | Comparison of modeled twenty-first century sea-level equivalent from glacier mass loss based on previous assessments included in IPCC (2013) with results from this study. Circles refer to multi-model means from 8 to 15 GCMs and bars indicate ±1σ. Previous results are recomputed to refer to the period 2010-2100 -by assuming their average rates to be constant in time. Results of this study are given both as $SLE_{\Delta M}$ and SLE_{eff} while the results from previous studies denote $SLE_{\Delta M}$.

11

2015

With our glacier model, we showed the low influence of climate change mitigation on glaciers due to the current climate glacier mass loss commitment !

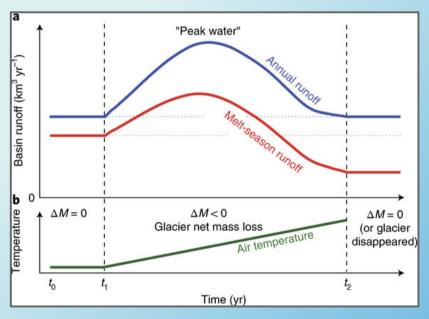
Source: Alex Tingle, NASA & Google

ONGOING ACTIVITIES & FUTURE WORKS (1/2) Universität Bremen*

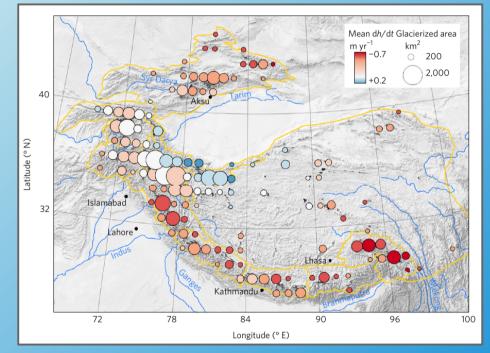
Marzeion et al., 2012 – Maussion et al., 2018, submitted – http://oggm.org/ → explicit ice dynamic & much more other advantages :-) (see poster OGGM, Champollion, N. et al., Wednesday 11 April 17:30-19:00 in Hall X5, session CR1.2/CL4.19)

 $GlacierMIP \rightarrow glacier model intercomparison (WCRP/CLIC, http://www.climate-cryosphere.org/activities/targeted/glaciermip)$

ITMIX (IACS) \rightarrow ice thickness intercomparison


Nicolas Champollion

ONGOING ACTIVITIES & FUTURE WORKS (2/2) Universität Bremen*


- A. regional evolution of glacier mass loss
- B. implication for hydrology

• • •

C. historical mass balance reconstruction

Source: Huss et al., 2018

Source: Brun et al., 2017

THANK YOU FOR YOUR ATTENTION