

Integrating geological, geochemical and geophysical data and uncertainties into a coherent 3D model

Virginia Strati (1,2), Scott A. Wipperfurth (3), Marica Baldoncini (4,1), William F. McDonough (3,5), Fabio Mantovani (1,2)

- (1) Department of Physics and Earth Sciences, University of Ferrara, Ferrara, Italy
- (2) INFN, Ferrara Section, Ferrara, Italy
- (3) Department of Geology, University of Maryland, College Park, Maryland, 20742 USA
- (4) INFN, Legnaro National Laboratories, Padua, Italy
- (5) Department of Earth and Planetary Materials Science and Research Center for Neutrino Science, Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8578, Japan

European Geosciences Union, General Assembly

Wien - 12th April 2018

A 3D crustal model for the SNO+ experiment

STUDY AREA

The **50 x 50 km** area centered at **SNOLAB**, an underground (2092 m) physics laboratory at Sudbury (Ontario, Canada).

<complex-block>

THE SNO+ EXPERIMENT

- 12 m diameter Acrylic Vessel
- 1000 tons of Liquid scintillator
- 9438 Photomultiplier Tubes of

20 cm diameter

- Investigate the properties of neutrinos and of their sources...
- ... in particular **GEONEUTRINOS** the antineutrinos from the Earth

Geoneutrinos: a new probe for Earth interior

 Electron antineutrinos produced in beta minus decays of naturally occurring radioactive isotopes (U & Th) in the Earth

$$dS(U) \sim \frac{\rho \cdot dV \cdot a(U)}{r^2}$$

 The cross section of geoneutrinos is very low: they could straight through more than a trillion kilometers of lead

$$S_{EXP} = S_{Crust} + S_{Mantle}$$

$$\searrow$$
EXPerimental signal Modeled signal

 $\phi_{\bar{v}} \sim 10^6 \text{ cm}^{-2} \text{s}^{-1}$

- With a measurement of mantle radioactivity we can...
- estimate the radiogenic heat power of the Earth
- exclude some Bulk Silicate Earth models
- understand the early stages of Earth formation

A integrated approach for modeling the crust

Geoch., Geoph, Geosys.

The geophysical model of the LOC

- Modeling of the 440 km x 460 km area using compiled seismic data
- Spatial interpolation of depth control points with the Ordinary Kriging

	CRUST 1.0		Huang et al. 2014 ¹	
	M [10 ¹⁸ kg]	Volume [10 ⁶ km ³]	Density [10 ³ kg/m ³]	M [10 ¹⁸ kg]
UC	6.6	4.2 ± 0.2	2.73 ± 0.08	11.5 ± 0.6
MC	8.1	1.3 ± 0.1	2.96 ± 0.03	3.8 ± 0.3
LC	8.0	3.2 ± 0.2	3.08 ± 0.06	9.9 ± 0.6
Total	22.7	8.7 ± 0.5	-	25.2 ±1.6

The identification of the units of the CUC

Bedrock Geology of Ontario map 1:250,000 scale

Simplified geological map: 9 lithologic units

Building the 3D geophysical model

3D interpolator method based on potential field theory using hard geological constraints.

- 6 interpreted seismic/gravimetric profiles¹
- 5 virtual cross sections²
- Simplified geological map
- Digital elevation model
- Orientation and structural data
- Stratigraphic succession of geological formations

Density values with uncertainties from gravimetric data¹ and compiled databases²

- 1 Olanyian et al. 2015, Can. J. Earth Sci
- 2 Huang Y et al. (2014), Geoch, Geoph, Geosys.

Geochemical data: ad hoc rock sampling

Planning of the sampling:

- Exposure surface of geological
- formations (~ 1 sample per 15 km²)
- Estimated volume

40

35

30

25

51

- Proximity to the detector
- Accessibility of the outcrops
- U and Th abundances from gammaray spectroscopy (HPGe) and ICPMS analysis

Geochemical data: statistical analysis

N_{sample} > 10: study of U and Th frequency distributions: investigation of Gaussian and Log-normal PDFs

For manifest (U, Th) correlation the total geoneutrino signal and its uncertainty were calculated on the basis of bivariate PDFs

		-	-
	U (µg/g)	Th (µg/g)	Corr. Coeff.
н	$2.3^{+4.0}_{-1.5}$	$8.0^{+15.3}_{-5.3}$	0.95
4.5			
4 - 3.5 -			
3		μ.	
2.5		ر المراجع المراجع المراجع المراجع المراجع	
			T
<u> </u>			
0.5		-	-
-05			
-0.5			
-1.5		0.5 0 0.5 1	
-2.0	2 1.0 1	In (eU)	

Geoneutrino signals calculation

INPUT

 $\tilde{y}_{-\sigma}^{+\sigma_2}$

INPUT **Geochemical data Lognormal distribution**

	U	Jnit	Density [g/cm³]	Volume [10 ³ km ³]	Unit	<i>a</i> (U) [µg/g]	<i>a</i> (Th) [µg/g]
		GT	2.73 ± 0.08	29.69 ± 1.40	GT	$0.7^{\rm +1.0}_{\rm -0.4}$	$2.7^{\mathrm{+6.0}}_{\mathrm{-1.9}}$
95% of		HI	2.75 ± 0.04	10.52 ± 0.49	HI	$2.3^{+4.0}_{-1.5}$	$8.0^{+15.3}_{-5.3}$
Volume	1	NG	2.83 ± 0.10	2.64 ± 0.12	NG	$1.2^{+0.6}_{-0.4}$	$5.9^{+2.1}_{-1.6}$
		GN	2.70 ± 0.10	1.43 ± 0.07	GN	3.3 ± 0.3	15.0 ± 1.5
	_						

Monte Carlo uncertainty propagation procedure

with known distributions (not limited to Gaussian) and correlations •

Unit	Signal (U+Th)		
	[TNU]		
GT	$0.6^{+0.9}_{-0.4}$		
HI	$4.7^{+8.4}_{-3.0}$		
NG	$1.0^{+0.4}_{-0.3}$		
GN	0.71 ± 0.08		

GEONEUTRINO SIGNAL @ SNO+

In short words...

Geoneutrinos results are the melting of three disciplines

Thank you