Modelling streamflow to get insights about catchment characteristics

Marco Dal Molin [(1), (2)], Mario Schirmer [(1), (2)], Fabrizio Fenicia [(1)]

Data analysis
Streamflow vs Meteorological variables
Precipitation and streamflow data show a strong variability between the catchments and a good correlation (figure 1). There is no visible correlation between streamflow and potential evapotranspiration.

Lumped and distributed models
We compared the performance of 4 model structures (generated with SUPERFLEX, Fenicia et al., 2011). All the models have a snow reservoir that is not shown in the schemes. The models were first applied with spatially uniform parameters (lumped and distributed states). The best performing model (M 4) was then applied with spatially distributed parameters.

Residual error model
In order to describe uncertainties, we use the expression $\text{RMS}_f = \sqrt{\text{E}^2 + \text{B}^2}$ where E is the Bias Coefficient transformation, with $\text{E} = -0.5$ and B is the transposition, and the error is assumed to be normally distributed with zero mean and constant calibrated variance.

Inference scheme
The model parameters are calibrated to observed data using a Bayesian inference approach

$P(D|M) \propto P(M|D)P(D)$

Depending on the simulation, the model is calibrated at the single gauging station or in all the stations together. A calibration-validation in time scheme has been used. All the plots displayed in the poster are analogous.

Uniform parameters
Nash - Sutcliffe efficiency

$\text{NSE} = 1 - \frac{\text{ SSR }_{\text{obs}}}{\text{ SSR }_{\text{mod}}}$

where $\text{ SSR }_{\text{obs}}$ and $\text{ SSR }_{\text{mod}}$ are the observed and simulated sum of squared residuals, respectively.

Model configuration
Model name	Model configuration	Calibration	BAFU	SNF	Eff.
M 1 | Lumped, Topo | Uniform | | | Excellent
M 2 | Lumped, Topo | Distributed | | | Excellent
M 3 | Lumped, Geo | Distributed | | | Excellent
M 4 | Distributed, Topo | Distributed | BAFU | SNF | Excellent

Conclusion
Best performance of the different configurations

Distributing the states ensures an excellent representation of the water balance but only distributing the parameters gives a good correlation of the signatures. There is an underestimation of the flashiness index probably due to limitations in the likelihood.

Acknowledgments
The authors thank WSL, BAFU and MeteoSwiss for providing the data and SNF for the financial support of the project number 20001_158901.

References

Do you like this poster?
pqsQMYtVP

Research objectives
What causes streamflow variability? How much is it caused by climatic conditions and variability? How much is it caused by catchment properties (e.g. geology vs topography)?

Data analysis
• What is more effective distributing the states or the proper-
• Is more effective distributing the states or the proper-

Study area
The Thur is an alpine and peri-alpine catchment in the north-east of Switzerland and it is characterized by a large spatial variability in terms of climatic conditions and physical characteristics.

Model
Distributed vs uniform parameters
Simulated vs measured streamflow

Elevation + Geology:

Streamflow vs Meteorological variables
Precipitation and streamflow data shows a strong variability between the catchments and a good correlation (figure 1). There is no visible correlation between streamflow and potential evapotranspiration.

What we have learnt
• Using other catchment properties to define the HRUs (soil, groundwater resources, land cover, etc.).
• Improve the snow representation.
• Analyse the simulated hydrograph in detail to spot model weaknesses.

What’s next?
• Improve the snow representation.
• Analyse the simulated hydrograph in detail to spot model weaknesses.

Do you like this poster?
pqsQMYtVP