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Supervised classification

- Hyperspectral data offer a tool to obtain valuable information in drill cores, which can be used to
identify minerals and accurately map their alteration phases and spatial patterns.

Unmixing-based feature extraction for mineral mapping
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- Mineral mapping is usually achieved by applying an endmember extraction technique followed by a
spectral similarity measure (e.g., Spectral Angel Mapper (SAM)).
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- In this work, we propose a machine learning technique to map minerals. We suggest to use
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abundance features as input for an unsupervised or supervised classification algorithm [1]. B Illite ® Chlorite (€)
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Proposed technique
(a) RGB composition of drill core hyperspectral image, (b) reference data of the HSI| generated by a comprehensive

- Flowchart for the proposed technique: visual analysis, (c) mineral map obtained by using N-Findr algorithm [2] to extract endmembers and Spectral Angle
Mapper to match pixels to endmembers spectra, (d) mineral maps obtained by using the chain of N-Findr and Fully

Feature extraction Constraint Linear Spectral Unmixing algorithms to generate abundance features followed by Support Vector Machines

(SVM) for the supervised classification, (e) mean spectra of all classes
Hyperspectral Endmember . Abundance L _
. —» Unmixing Classification —/ Mineral map
dataset extraction features
I Classification accuracies for 50 training samples per class(%)
A Trainingsamples . ... __________ l Methods

Accuracies SAM Abundance features + SVM

Overall 71224 +£14 93.32+£0.6

Average 63.66 £ 2.2 92.84 £ 0.7

Conclusions
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- We conclude that the proposed machine learning technique provides qualitatively and
qguantitatively accurate mineral maps.
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- We show that the abundance features are well suited for the purpose of mineral mapping since
they have physical meaning related to the abundances of the available minerals in each
sample.
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- Both proposed techniques, I.e., unsupervised and supervised, are with minimal human
'ff.-yps?m - B lllite-Gypsum interaction and allow the quick automatic mapping of minerals in typically large amount of drill
e (low intensity) core hyperspectral data.
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